Глутамат и аспартат

Глутамат и аспартат

Глутамат и аспартат

Аминокислоты аспартат и глутамат — основные возбуждающие нейромедиаторы в ЦНС. Они обнаруживаются в спинном мозге, мозжечке и двигательной коре головного мозга. Воздействуя на нейроны, глутамат повышает синтез оксида азота. Критическое повышение глутамата способно повысить уровень Са2+ внутри клеток, а также увеличить активность протеиназ и уровень свободных радикалов, оказывая токсическое действие.

Глутаматные рецепторы классифицируются как NMDA рецепторы и не-NMDA рецепторы.

ГАМК. Аминокислота ГАМК — самый распросраненный тормозной нейромедиатор в ПНС и ЦНС. Она синтезируется при декарбоксилировании глутаминовой кислоты посредством глутаматдекарбоксилазы. ГАМК принимает участие в метаболических и нейротрансмиттерных процессах мозга. Эта кислота участвует в регуляции двигательных функций. В нейронных цепях и интернейронах спинного мозга встречается еще один тормозной нейромедиатор глицин, напоминающий ГАМК по действию и расслабляющий мышцы-антагонисты.

Рецепторы ГАМК классифицируются как ионотропные ГАМК-А и ГАМК-С и метаботропные ГАМК-В. Многочисленные анестетики, такие как барбитураты, пропофол, этомидат, усиливают постсинаптический эффект ГАМК, воздействуя на синаптическую функцию. Рецепторы ГАМК также активируются с помощью баклофена, который используется при купировании мышечных спазмов.

Серотонин. Этот гормон – один из основных нейромедиаторов. Серотонин синтезируется в верхней части ствола мозга, нейронах средней линии моста шва и ядре. Биосинтез начинается с получения гидрокситриптофана путем гидроксилирования аминокислоты триптофана посредством фермента триптофангидроксилазы. Затем получившееся вещество декарбоксилируется с образованием серотонина. При этом, внутриклеточная концентрация фермента моноаминооксидазы и интенсивность захвата триптофана регулируют уровень серотонина.

Рецепторы серотонина могут быть и метаботропными, и ионотропными. На сегодняшний день насчитывается 7 типов, 5-HT 1-7 и 15 подтипов. При этом, 5-НТ 3 являются ионотропными рецепторами, а остальные — метаботропными, семидоменными, связанными с G-белками.

Ацетилхолин является нейромедиатром, осуществляющим нервно-мышечную передачу. В парасимпатической НС, постганглионарных холинергических волокнах, бульбоспинальных мотонейронах, вегетативных преганглио-нарных волокнах, это основной нейромедиатор. Ацетилхолин синтезируется из ацетил-коэнзима А и холина при участии фермента ацетилхолинэстеразы, но он является нестойким веществом и разрушается при локальном гидролизе ацетилхолинэстеразой с образованием уксусной кислоты и холина. Активность фермента ацетилхо-линтрансферазы и количество захватываемого холина регулируют уровень ацетилхолина. Недостаток ацетилхолина влияет на клиническую картину болезни Альцгеймера, нейродегенеративного заболевания.

С фармакологической точки зрения, холинергические рецепторы различаются как никотиновые (Н-рецепторы) и мускариновые (М-рецепторы). Никотиновые рецепторы H находятся в химических синапсах ЦНС и ПНС, а также нервно-мышечных синапсах. Мускариновые рецепторы М находятся у окончаний постганглионарных холинергических (парасимпатических) волокон на постсинаптической мембране клеток эффекторных органов. Также они располагаются в ЦНС (коре ГМ, РФ) и на нейронах вегетативных ганглиев.

Дофамин. Гормон дофамин является нейромедиатором, который вырабатывается мозговым веществом надпочечников. Преимущественно он взаимодействует с центральными нейронами, а также рецепторами некоторых периферических нервных волокон. Биосинтез начинается с получения L-ДОФА путем гидроксилирования L-тирозин посредством фермента тирозингидроксилазы. Затем получившееся вещество декарбоксилируется с образованием дофамина. Весь процесс протекает в цитопазме нейрона. По окончании своего действия, дофамин подвергается обратному захвату в клетку, где он расщепляется моноаминооксидазой (МАО). Его уровень в нервных окончаниях регулируется тирозингидроксилазой.

Дофаминергические рецепторы насчитывают по меньшей мере пять подтипов (D1—5). Во «внутреннем подкреплении» участие принимают рецепторыD2 и D4. Другие регулируют функции экстрапирамидной НС.

Норадреналин. Гормон норадреналин — нейромедиатор многих центральных нейронов и постганглионарных симпатических волокон. Биосинтез начинается с того, что из фенилалалина получается тирозин, из которого синтезируется дофамин, который гидроксилируется посредством фермента допамин-гидроксилазы с образованием норадреналина в везикулах синаптических окончаний. По окончании взаимодействия с рецепторами некоторая часть норадреналина разрушается под воздействием катехол-О-метилтрансферазы, остаток подвергается обратному захвату в клетку и расщепляется МАО. Его уровень в нервных окончаниях регулируется тирозингидроксилазой и МАО.

Аспартат видео

Метаболизм дикарбоновых аминокислот и глутамина

Более 2/3 аминоазота аминокислот приходится на долю глутамата и его производных; эти аминокислоты доминируют в количественном отношении в мозге всех изученных видов животных. В спинном мозге наблюдается аналогичная картина, а периферическая нервная система содержит значительно меньше глутамата, глутамина, N-ацетиласпартата, чем головной мозг, а ГАМК почти отсутствует в периферических нервах позвоночных. При высоком уровне этих аминокислот в головном мозге метаболизм их также чрезвычайно быстрый.

Глутамат и аспартат

Особенностью метаболизма глутамата в нервной ткани является его тесная связь с интенсивно функционирующим в этом органе циклом трикарбоновых кислот, что и позволяет считать его промежуточным продуктом энергетического метаболизма. Так, уже через 30 мин после инъекции меченой глюкозы более 70% радиоактивности растворимой фракции приходится на долю глутамата и его производных. Этому способствует чрезвычайно быстрое взаимопревращение глутамата и а-кетоглутарата в ЦНС. Высокий процент включения радиоактивности из глюкозы в аминокислоты мозга явился основанием для предположения, что утилизация глюкозы в этом органе в значительной степени происходит через биосинтез и окисление аминокислот.

Непосредственным предшественником для синтеза глутамата в мозге является а-кетоглутаровая кислота, которая может превращаться в глутамат или путем прямого восстановительного аминирования с участием глутаматдегидрогеназы, или путем переаминирования.

Энзим менее активен в мозге, чем в печени, присутствует в митохондриях, требует в качестве кофакторов пиридиннуклеотидов и активируется АДФ. Км этого энзима для аммония близок к 8 мМ. Реакция обратима, однако равновесие сильно сдвинуто в сторону прямой реакции, т.е. синтеза глутаминовой кислоты.

Таким образом, в головном мозге глутаматдегидрогеназная реакция участвует не столько в окислении глутамата, сколько в синтезе его из а-кетоглутаровой кислоты, обеспечивая тем самым непрерывное превращение свободного аммиака в аминоазот аминокислот. Основной же путь окисления глутамата в мозге – через переаминирование.

В митохондриях мозга 90% глутамата подвергается переаминированию с образованием аспартата. Фермент, катализирующий переаминирование глутамата с щавелевоуксусной кислотой, – аспартатаминотрансфераза является наиболее мощной трансаминазой головного мозга. Выделены два изоэнзима аспартатаминотрансферазы, локализованных в митохондриях и цитоплазме. Функциональная роль их различна. Митохондриальный фермент связан в основном с функционированием ЦТК, цитоплазматический определяет интенсивность глюконеогенеза.

Как уже отмечалось, путь метаболизма глутамата через переаминирование намного активнее дегидрогеназного. В регуляции соотношения между этими двумя путями, конкурирующими за один субстрат, важная роль принадлежит макроэргическим соединениям. В интактных митохондриях энзим взаимодействует по преимуществу с НАДФ + и интенсивность реакции пропорциональна отношению НАДФ + /НАЦФН2. Макроэргические соединения способствуют превращению НДЦФ + в НАДФН2 и тем самым подавляют дезаминирование глутамата. Наоборот, трансаминазный путь требует расходования макроэргических соединений. Поэтому выбор между этими двумя реакциями определяется энергетическими возможностями митохондрий.

При нормальном функционировании ЦТК дегидрогеназный путь окисления глутамата подавлен, а трансаминазный активно протекает. В результате уменьшения количества макроэргических соединений, например при добавлении к митохондриям разобщителя окислительного фосфорилирования 2,4-динитро-фенола, подавляется трансаминазный путь при одновременном резком усилении дегидрогеназного пути окисления глутамата.

Взаимопревращение а-кетоглутарата и глутамата происходит чрезвычайно быстро. В мозге был идентифицирован метаболический путь такого взаимопревращения, получивший название аспартат-малатного шунта, служащего для транспорта восстановительных эквивалентов из цитозоля в митохондрии.

Уже упоминалось, что различные органеллы клеток мозга могут индивидуально контролировать уровни аминокислот, накапливая их против градиента концентрации. Примером этого могут служить изолированные из ЦНС митохондрии, которые быстро поглощают глутамат и малат, освобождая соответствующие количества аспартата и а-кетоглутарата. Это означает, что ток аспартата через митохондриальную мембрану связан с током глутамата в обратном направлении; также реципрокно связаны ток малата и а-кетоглутарата. Энзимы, катализирующие отдельные реакции малат-аспартатного шунта, превалируют в тканях ЦНС. В нейронах малат-аспартатный шунт является преобладающим механизмом переноса восстановительных эквивалентов в митохондрии.

Таким образом, глутаминовая кислота выполняет чрезвычайно важную функцию в энергетическом обеспечении головного мозга, которая заключается в поддержании метаболитов ЦТК на определенном и довольно высоком уровне, а также в снабжении митохондриальных синтетических процессов восстановительными эквивалентами.

Большое значение имеет образование аммиака из глутамата. В головном мозге обнаружены многочисленные аминотрансферазы основных, кислых, нейтральных и ароматических аминокислот. При участии этих ферментов аминогруппы различных аминокислот переносятся в конечном счете на глутамино-вую кислоту. Последняя переаминируется с ЩУК при участии аспартатами-нотрансферазы с образованием аспартата. Образование аммиака из аспартата происходит различным образом в митохондриях и цитоплазме. В митохондриях этот процесс связан с аминированием дезаминоформ НАД + и включает в себя три ферментативных реакции.

Вне митохондрий действует другой циклический процесс образования аммиака, в котором аспартат реаминирует инозинмонофосфат.

Для удаления аммиака в ЦНС служит глутаминсинтетазная реакция.

Глутаминсинтетаза катализирует реакцию:

Этот энзим в мозге животных находится в более высокой концентрации, чем в других органах, составляя 0,2% от общего белка мозга. Энзим требует АТФ и Mg + и подавляется глицином и аланином. Км для аммония – порядка 0,39 мМ, т.е. при нормальной концентрации аммония в мозге фермент работает в режиме полунасыщения. В нормальных физиологических условиях, когда имеется достаточный уровень АТФ, глу-таминсинтетазная реакция направлена в сторону связывания аммиака.

Образование глутамина является важным механизмом детоксикации аммония, к которому мозг чрезвычайно чувствителен и накопление которого губительно для ЦНС. В частности, повышение аммиака в мозге до концентрации 0,6 мМ сопровождается судорогами. Системное введение солей аммония вызывает конвульсии и увеличение содержания глутамина в мозге. В случае серьезных повреждений печени повышается концентрация аммония и глутамина в спинномозговой жидкости – в этих случаях наблюдается кома. Симптомы печеночной комы смягчаются введением глутамата. Основная часть глутаминсинтетазы локализована в глиальных клетках и лишь небольшая часть ее представлена в нервных окончаниях.

Дезаминирование глутамина катализируется глутаминазой, ферментом, наиболее активным в нейронах, где он локализован в митохондриях. Следует отметить, что активность этого фермента в головном мозге невелика; продукты реакции – глутаминовая кислота и аммоний – тормозят активность фермента.

Предполагается участие этого фермента в мембранном транспорте глутамата. Известно, что биологические мембраны более проницаемы для глутамина, чем для глутамата, и глутаминаза может участвовать в превращении глутамина крови во внутриклеточный глутамат. Глутаминаза играет важную роль также в регуляции содержания глутамата в нервных окончаниях. Тот факт, что глутаминсинтетаза локализована в основном в глиальных клетках, а глутаминаза наиболее активна в нейронах, а также то, что глутамин оказался главным предшественником глутамата и ГАМ К, выполняющих трансмиттерную функцию, послужил основанием для концепции о существовании глушаминового цикла, Глутамат, поглощаясь глиальными клетками, превращается в глутамин в синтетазной реакции, последний входит в нейроны, образуя там глутаминовую кислоту. Таким образом, глутамин служит глиально-нейронааьным транспортером глутамата.

Другой важной функцией глутамата является его участие в синтезе белков и биологически активных пептидов. Глутамат и глутамин составляют вместе от 8 до 10% общих аминокислотных остатков в гидролизате белков мозга. В частности, два хорошо изученных мозгоспецифичных белка – S-100 и 14-3-2 – содержат особенно высокую долю глутаминовой кислоты. Глутамат является также составной частью ряда малых и средних регуляторных пептидов мозга. Это прежде всего глутатион и ряд у-глутамильньгх дипептидов. Некоторые нейропептиды содержат циклическое производное глутамата – аироглутамат в качестве N-терминального остатка, который предохраняет эти пептиды от протеолиза. К таким “пептидам относятся люлибе-рин, тиролиберин, нейротензин, бомбезин и др. .

Введение глутамата в различные районы мозга приводит либо к судорожной активности, либо к распространяющейся депрессии, даже если количество его мало по сравнению с нормальной концентрацией глутамата в мозге. Глутамин не вызывает такого эффекта. При внутривенном введении глутамат может вызвать гибель клеток в определенных районах ЦНС, особенно вокруг желудочков мозга, где менее развит гематоэнцефалический барьер. Нейроны незрелых животных, у которых еще отсутствует высокоразвитый гематоэнцефалический барьер, также очень чувствительны к глутамату. Оральное введение больших количеств глутамата не действует на ЦНС большинства людей, а соли глутамата широко используются в качестве пищевой приправы. Однако у некоторых лиц обнаруживается повышенная чувствительность к глутамату натрия, он вызывает сенсорные и моторные нарушения, включая ощущение жжения, напряжение лица, боль в грудной клетке и головную боль. Эти симптомы известны как “синдром китайских ресторанов”, так как глутамат натрия широко используется в китайской кухне. Многие аналоги глутамата токсичны.

Читайте также:  Как правильно сдавать спермограмму? Расшифровка результатов

Остановимся на некоторых сторонах нейротрансмиттерной функции глутамата. Для того чтобы глутамат эффективно функционировал в качестве нейротрансмиттера, его модальная внеклеточная концентрация должна быть ниже той, которая вызывает деполяризацию мембран. В действительности она колеблется от 1 до 10 мкМ; такая низкая внеклеточная концентрация глутамата поддерживается активным транспортом в нейроны и особенно в глиальные клетки.

В процессе выхода глутамата в синаптическую щель концентрация его там значительно повышается – до 1 мМ.

Последующий обратный захват глутамата нейронами и астроцитами осуществляется с участием Na-зависимых высокоаффинных переносчиков, из синаптической щели глутамат удаляется в основном путем захвата астроцитами. Для функционирования глутамата в качестве нейротрансмиттера необходимо постоянное пополнение его пула в нервных окончаниях.

Предшественниками трансмиттерного пула глутамата могут быть глюкоза и а-кетоглутарат.

Глутамат может также образовываться из орнитина и аргинина. Но основным источником нейротрансмиттерного глутаматного пула, по данным изотопных исследований, оказался глутамин, который синтезируется в основном в астроцитах, где локализована глутаминсинтетаза.

Далее он легко транспортируется через мембрану астроцитов и с помощью активных переносчиков достигает нервных окончаний.

Глутамат и аспартат

Наиболее распространенный возбуждающий медиатор головного и спинного мозга — аминокислота L-глутамат. Значимый пример возбуждающих нейронов, использующих глутамат в качестве медиатора,— все нейроны, идущие от коры полушарий к белому веществу мозга, независимо от их направления в других частях коры полушарий, ствола или спинного мозга. Глутамат синтезируется из α-кетоглутарата, который, кроме того, служит субстратом для образования ГАМК.

ГАМК — самый распространенный в спинном и головном мозге тормозной медиатор, участвующий в работе приблизительно трети всех синапсов нервной системы. Миллионы ГАМКергических нейронов образуют основную часть вещества хвостатого и чечевицеобразного ядер, их также встречают в большом количестве в околоводопроводном сером веществе, гипоталамусе и гиппокампе. Кроме того, ГАМК выполняет функцию медиатора в крупных клетках Пуркинье, которые являются единственными клетками, выходящими из коры мозжечка. Аксоны клеток Пуркинье спускаются к зубчатому и другим ядрам мозжечка. ГАМК синтезируется из глутамата под действием фермента глутаматдекарбоксилазы.

Третий аминокислотный нейромедиатор — глицин. Глицин участвует в синтезе белков всех тканей организма и представляет собой простейшую аминокислоту, синтезируемую из серина в процессе катаболизма глюкозы. Этот нейромедиатор оказывает тормозное действие преимущественно в синапсах ассоциативных нейронов ствола мозга и спинного мозга.

Три аминокислотных медиатора.
Глутамат синтезируется из а-кетоглутарата под действием фермента ГАМК-трансаминазы (ГАМК-Т);
γ-аминомасляная кислота (ГАМК) синтезируется из глутамата под действием декарбоксилазы глутаминовой кислоты (ДГК).
Глицин представляет собой простейшую аминокислоту.

а) Глутамат. Глутамат выполняет функцию нейромедиатора как в ионотропных, так и в метаботропных рецепторах. К ионотропным рецепторам относят АМРА-, каинат- и NMDA-рецепторы, которые получили свои названия благодаря активирующим их синтетическим агонистам: амино-метил-изоксазол-пропионовой кислоте, каинату и N-метил-D-аспартату, соответственно. Каинатные рецепторы редко встречаются изолированно; чаще всего они комбинируются с АМРА-рецепторами и входят в состав АМРА-каинатных (АМРА-К) рецепторов.

Ионотропные рецепторы глутамата. При активации АМРА-К-рецепторов на постсинаптической мембране происходят немедленное поступление большого количества ионов Na + в клетку и выход небольшого количества ионов К + из клетки, что приводит к формированию раннего компонента ВПСП нейрона-мишени, деполяризующего мембрану клетки-мишени от -65 мВ до -50 мВ. Этот процесс приводит к электростатическому «выталкиванию» катионов магния (Mg 2+ ), которые в состоянии покоя «закрывают» ионный канал NMDA-рецептора. Ионы Na+ проходят через ионный канал, происходит формирование потенциала действия.

Важно отметить, что ионы Са 2+ также проникают внутрь клетки и за счет продолжительного периода деполяризации, длительность которого достигает 500 мс от возникновения единичного потенциала действия, активируют Са 2+ -зависимые ферменты, способные изменять структуру клетки-мишени и даже количество ее синаптических контактов. Феномен синаптической пластичности в ответ на активацию рецепторов можно отчетливо проследить в экспериментальных исследованиях на культивируемых срезах гиппокампа крыс. Этот феномен считают основным механизмом развития кратковременной памяти. Например, анальгетик кетамин, блокирующий NMDA-каналы, помимо своего основного действия препятствует формированию памяти.

Характерная особенность многократно повторяющейся активации NMDA-рецепторов — долговременное потенцирование, проявляющееся возникновением ВПСП со значениями, превышающими нормальные показатели даже несколько дней спустя (см. далее — длительная депрессия).

Роль NMDA-рецепторов в развитии феномена глутаматной эксайтотоксичности подтверждена развитием ишемических инсультов у экспериментальных животных. Предполагают, что причиной гибели большого количества нейронов стало избыточное поступление ионов Са 2+ в клетку в ходе следующих событий: ишемия > избыточное поступление ионов Са 2+ в клетку > активация Са 2+ -зависимых протеаз и липаз > разрушение белков и липидов > гибель клетки. Назначение антагониста NMDA-рецепторов сразу же после первичного инсульта позволяет снизить тяжесть ишемического поражения мозга.

Метаботропные глутаматные рецепторы Выделяют более 100 различных метаботропных глутаматных рецепторов. Все метаботропные рецепторы — это внутренние мембранные белки, большинство которых располагается на постсинаптических мембранах и оказывает возбуждающее действие. Некоторые метаботропные рецепторы локализуются на пресинаптической мембране и являются тормозными ауторецепторами.

Ионотропные глутаматные рецепторы.
(1) При возникновении потенциала действия в области нервного окончания происходит (2) открытие кальциевых каналов (Ca 2+ ).
(3) Под влиянием ионов Ca 2+ синаптические пузырьки приближаются к плазматической мембране.
(4) Молекулы глутамата высвобождаются в синаптическую щель путем экзоцитоза.
(5) Медиатор связывается с AMPA-K-рецепторами, что вызывает открытие ионных каналов и поступление большого количества ионов Na + в клетку, а также выход небольшого количества ионов К + из клетки в результате чего (6) возникает возбуждающий постсинаптический потенциал (ВПСП), вызывающий деполяризацию значением 20 мВ, что делает возможной (7) активацию NMDA-рецептора глутаматом за счет «выталкивания» из ионного канала рецептора иона Mq24 Через канал NMDA-рецептора проникают ионы Na + и Са 2+ , что приводит к деполяризации клетки.
(8) ВПСП, генерированный NMDA-рецептором, достаточен для (9) усиления потенциалов действия с продолжительным периодом реполяризации за счет повышения внутриклеточной концентрации ионов Са 2+ .
Лекарственные средства и ионотропный ГАМКA-рецептор. Зеленым цветом обозначено действие агонистов, красным цветом—действие антагониста.
Барбитураты, бензодиазепины и этанол вызывают гиперполяризацию клетки за счет воздействия на рецептор.
Бикукуллин—антагонист рецептора. Пикротоксин оказывает прямое действие, закрывая отверстие ионного канала.
Глутаматергический и ГАМКергический синапсы мультиполярного нейрона с шипиковыми дендритами.
Продемонстрирована пространственная суммация возбуждений для каждой пары синапсов.

б) ГАМК. ГАМК-рецепторы могут быть как ионотропными, так и метаботропными.

1. Ионотропные ГАМК-рецепторы. Рецепторы, называемые ГАМКA, расположены в большом количестве в области лимбической доли головного мозга. Каждый рецептор связан с хлорным каналом. При активации ГАМКA-рецепторов хлорные каналы открываются, и ионы Cl- по градиенту концентрации поступают из синаптической щели в цитозоль. Причиной гиперполяризации, при которой достигаются значения -70 мВ и ниже, служит суммация последовательных ТПСП.

Действие седативных снотворных препаратов барбитуровой кислоты и бензодиазепина (например, диазепама) реализуется за счет активации ГАМКA-рецепторов. Аналогично действие этанола (потеря контроля социального поведения под влиянием действия этанола происходит вследствие растормаживания возбуждающих нейронов-мишеней, которые в обычном состоянии «сдерживаются» под действием ГАМКергических влияний). Механизм действия некоторых летучих анестетиков также заключается в связывании рецепторов, за счет чего ионные каналы остаются открытыми более долгое время.

Основной антагонист, занимающий активный центр рецептора, — конвульсант бикукуллин. Другой конвульсант — пикротоксин — связывается с субъединицами белка, в активном состоянии закрывающими ионный канал.

2. Метаботропные ГАМК-рецепторы. Метаботропные рецепторы, получившие название ГАМКВ, равномерно распределены во всех структурах мозга, их также обнаруживают в периферических вегетативных нервных сплетениях. Несмотря на то, что большое количество G-белков этих рецепторов выполняет роль вторичных посредников, значительная часть G-белков оказывает влияние на особый вид постсинаптических калиевых каналов — GIRK-каналы (G-белок-связанные калиевые каналы внутреннего выпрямления). При присоединении медиатора происходит отделение β-субъединицы, которая «выталкивает» ионы К + через GIRK-канал, что приводит к формированию ТПСП.

Ответная реакция этого вида рецепторов нейрона-мишени медленнее и слабее по сравнению с ионофорезом ГАМКA, и для их активации необходима стимуляция большей частоты. В связи с этим считают, что ГАМКA-рецепторы расположены не во внешнем слое синаптической щели, а внесинаптически. Это предположение может быть подтверждено наличием еще одного вида расположенных внесинаптически G-направленных каналов. Эти кальциевые каналы также потенциалозависимые и принимают участие в обеспечении клетки количеством ионов Са 2+ , необходимым для перемещения синаптических пузырьков через пресинаптическую мембрану. При активации G-Са 2+ -лигандного участка связывания происходит закрытие кальциевых каналов, что приводит к снижению влияния потенциала действия, а также к торможению исходного нейрона (источника возбуждения) и других прилежащих глутаматергических нейронов.

В некоторых случаях для лечения заболеваний, связанных с чрезмерным рефлекторным тонусом мышц (мышечная спастичность), применяют инъекции миорелаксанта баклофена (агониста ГАМКВ) в окружающее спинной мозг субарахноидальное пространство. Баклофен проникает в спинной мозг и ингибирует высвобождение глутамата из чувствительных нервных окончаний в основном за счет уменьшения поступления большого количества ионов Са 2+ в клетку, возникающего под влиянием потенциалов действия чрезмерной частоты.

Схема открытия GIRK-канала, расположенного на постсинаптической мембране, G-белком.
(А) Состояние покоя. (Б) ГАМК активирует рецептор, и βγ-субъединица G-белка перемещается по направлению к GIRK-каналу.
(В) βγ-субъединица вызывает высвобождение ионов К + , что приводит к гиперполяризации мембраны.
Высвобождение медиатора и дальнейшие процессы, происходящие в ГАМКергическом нейроне.
(1) Связываясь с ГАМКA-рецепторами, медиатор вызывает гиперполяризацию мембраны нейрона-мишени за счет открытия хлорных (Cl – ) каналов.
(2) Аналогичное действие оказывают связывающиеся с GIRK рецепторы ГАМКВ за счет открытия G-белок-связанных калиевых каналов внутреннего выпрямления (GIRKS).
(3) При связывании ГАМКВ-ауторецепторов уменьшается высвобождение медиатора исходным нейроном за счет закрытия лиганд-G-белок-зависимых кальциевых (Са 2+ ) каналов.
(4) Связывание ГАМКВ-рецепторов соседнего глутаматергического нейрона оказывает аналогичное влияние, опосредованное действием ионов Са 2+ .

3. Обратный захват глутамата и ГАМК. Обратный захват глутамата и ГАМК происходит двумя путями. В левой части каждого рисунка показано, что некоторые молекулы медиатора захватываются из синаптической щели транспортными белками мембраны и помещаются обратно в синаптические пузырьки. В правых частях рисунков изображен захват молекул медиаторов прилежащими астроцитами. Находясь в астроците, глутамат под действием глутаминсинтетазы превращается в глутамин. В процессе последующего транспорта к синаптическому уплотнению глутамат достраивается под действием глутаминазы и помещается в синаптический пузырек. ГАМК превращается в глутамат под действием ГАМК-трансаминазы. В процессе транспорта глутамат трансформируется в глутамин под действием глутаминсинтетазы.

Вернувшись в область синаптического уплотнения, глутамин под действием глутаминазы превращается в глутамат, из которого под действием глутаматдекарбоксилазы синтезируется ГАМК, молекулы которой помещаются в синаптические пузырьки.

Блокирование фермента глутаматдекарбоксилазы лежит в основе известного аутоиммунного заболевания — синдрома «скованного человека».

Схема обратного захвата и повторного синтеза глутамата.
В левой части рисунка происходит обратный захват молекулы глутамата в неизменном виде.
В правой части рисунка (1) глутамат захватывается астроцитами, затем (2) под действием глутаминсинтетазы превращается в глутамин.
(3) Глутамин поступает в нервное окончание, (4) где под действием глутаминазы превращается в глутамат, который (5) возвращается в синаптические пузырьки.
Схема обратного захвата и повторного синтеза ГАМК. В левой части рисунка происходит обратный захват молекулы ГАМК в неизменном виде.
В правой части рисунка ГАМК захватывается астроцитами, затем (1) под действием ГАМК-трансаминазы превращается в глутамат, который (2) под действием глутаминсинтетазы превращается в глутамин.
(3) Глутамин поступает в нервное окончание и под действием глутаминазы образует глутамат.
(4) Глутамат под действием глутаматдекарбоксилазы превращается в ГАМК, которая (5) возвращается в синаптические пузырьки.

Читайте также:  УЗИ органов малого таза у женщин - как подготовиться?

г) Глицин. Глицин синтезируется из серина в процессе катаболизма глюкозы. Основная функция этого нейромедиатора — обеспечение отрицательной обратной связи двигательных нейронов ствола мозга и спинного мозга. При инактивации глицина (например, при отравлении стрихнином) возникают мучительные судороги.

Обратный захват. В области синаптического уплотнения при помощи аксональных белков-переносчиков осуществляется быстрый обратный захват глицина с последующим его помещением в синаптические пузырьки.

Схема отрицательной обратной связи: клетки Реншоу ингибируют избыточное возбуждение двигательных нейронов. АХ—ацетилхолин.
(1) Нейрон нисходящего двигательного проводящего пути оказывает возбуждающее действие на двигательный нейрон спинного мозга.
(2) Двигательный нейрон вызывает сокращение мускулатуры.
(3) Возвратная ветвь стимулирует клетку Реншоу.
(4) Клетка Реншоу оказывает ингибирующее влияние, достаточное для предупреждения чрезмерной активации двигательного нейрона.

Редактор: Искандер Милевски. Дата публикации: 12.11.2018

Глутаминовая кислота и мозг: NMDA-рецепторы

Глутаминовая кислота (глутамат) – аминокислота, которая обеспечивает работу центральной нервной системы. В головном мозге концентрация глутамата в 80 раз больше, чем в сыворотке крови, и недаром, ибо с его помощью передается до 60% нервных импульсов. Она может как образовываться в самом головном мозге, так и поступать в вещество мозга из крови через гемато-энцефалический барьер. Поступающая с пищей глутаминовая кислота проходит ряд трансформаций, не проникая непосредственно в головной мозг.

В центральной нервной системе глутаминовая кислота выполняет следующие функции:

  1. Медиаторную – является веществом-посредником в передаче сигнала с одной нервной клетке на другую
  2. Энергетическую – снабжает нервные клетки энергией, необходимой для работы
  3. Антитоксическую – связывает аммиак – ядовитое вещество, образующееся в процессе работы клеток
  4. Синтетическую – является веществом-предшественником для образования других веществ, важных в работе нервных клеток, в первую очередь тормозного нейромедиатора ГАМК – γ-аминомасляной кислоты

Глутаминовая кислота – нейромедиатор

Нейромедиаторы – вещества, которые помогают проводить сигнал от одного нейрона к другому через расщелину, которую называют синапсом. По нейрону сигнал бежит в виде электрического импульса, но чтобы преодолеть синапс электрический сигнал должен быть преобразован в химический. На кончике нервного отростка, передающего сигнал, запасены химические вещества – медиаторы или проводники. Когда импульс достигает окончания отростка, он освобождает медиатор, который плывет через синаптическую щель к другому нервному окончанию, принимающему сигнал, возбуждая в нем электрический ток. Освобожденный медиатор сразу же расщепляется ферментами, а в нервной клетке он образовывается наново из заготовок, плавающих в межклеточном пространстве.

Глутаминовая кислота — это возбуждающий нейромедиатор, т.е. она усиливает нервный импульс. В центральной нервной системе имеется порядка миллиона клеток, заточенных на принятие сигналов через глутамат (глутаматергических нейронов). Эти клетки расположены в коре головного мозга, гиппокампе, черной субстанции, обонятельной луковице, мозжечке, а также в спинном мозге, где принимают сигналы от чувствительных окончаний

Глутаматергическая система неспецифична, т.е. невозможно выделить конкретную функцию, которую выполняет глутаминовая кислота, но в то же время она участвует в работе головного мозга в целом. Глутаминовая кислота связывает в единое целое огромное количество нейронов (нервных клеток) головного мозга.

Глутаминовая кислота участвует не только в классическом проведении сигнала от нейрона к нейрону, но и в объемной нейротрансмиссии, когда импульс передается сразу на несколько нервных окончаний путем суммации глутамата, освобожденного из соседних клеток, что способствует формированию разлитого возбуждения, иначе говоря, доминантного очага. В нормальных условиях это способствует концентрации внимания на каком-либо одном деле, сосредоточенности на достижении цели.

Глутаминовая кислота играет роль в развитии нервной системы. Она способствует образованию новых отростков нейронов и установлению новых связей между ними, т.е. участвует в таких процессах, как обучение и память.

Глутаматные рецепторы

Рецепторы – это своего рода двери, закрывающие вход в клетку. Ключом к замку является сигнальная молекула – медиатор, которая взаимодействует с рецептором, он открывает дверь, куда заходят вещества, заставляющие клетку реагировать на сигнал. Для глутаматных рецепторов таким ключом являются глутаминовая кислота и аспарагиновая кислота.

В нейронах имеются два вида рецепторов, реагирующих на выброс глутамата: ионотропные и метаботропные (mGLuR 1-8).

Ионотропные рецепторы в ответ на присоединения лиганда, т.е. сигнальной молекулы, открывают «двери» клетки для ионов, т.е. заряженных частиц, которые меняют заряд клетки, вызывая таким образом «потенциал действия», т.е. направленный электрический ток.

Метаботропные рецепторы вызывают перестройку внутри самой клетки. Эффект при стимуляции ионотропных рецепторов возникает быстро, но держится недолго, это рецепторы немедленного ответа, эффект от стимуляции метаботропных рецепторов возникает через определенное время, но держится дольше. Ионотропные активируются на несколько миллисекунд, но часто, метаботропные могут сохранять активность нейрона от секунд до нескольких минут.

Группа ионотропных рецепторов делится на три семейства: NMDA- рецепторы, AMPA-рецепторы и каинатные рецепторы (рецепторы каиновой кислоты).

Группа метаботропных рецепторов также делится на три группы: I, II, III.

Ионотропные рецепторы

NMDA-рецепторы назвали так поскольку веществом, избирательно их возбуждающим, (селективным агонистом) является N-метил-D-аспартат, т.е. аспарагиновая кислота, к которой прицепился метильный хвост.

Для AMPA-рецепторов таким веществом является α – аминометилизоксазолпропионовая кислота.

Каинатные рецепторы избирательно стимулируются каиновой кислотой. Она содержится в красных водорослях и используется в науке для моделирования эпилепсии и болезни Альцгеймера.

По последним данным δ-рецепторы, которые расположены в мозжечке млекопитающих в клетках Пуркинье , также стали причислять к ионотропным.

Механизм действия всех ионотропных рецепторов схож. Лучше всего он изучен на примере NMDA-рецепторов.

NMDA-рецепторы

NMDA-рецепторы регулируют возбудимость нервной ткани и оказывают влияние на формирование новых связей между нейронами (синаптическая пластичность).

Дверь в клетку, которую представляет собой NMDA-рецептор, имеет сложную структуру: она состоит из четырех частей – субъединиц-белков, два из которых являются представителями класса NR1, а два других – представителями класса NR2.

Внеклеточная часть белка NR2 – это замок на двери, который открывается медиатором. Ключом к замку являются глутамат, аспартат и N-метил-D-аспартат. Белок NR1 выполняет роль стопора, отодвигает стопор аминокислота глицин. Чтобы замок открылся, к каждой субъединице должен подойти свой ключ, т.е. рецептор заработает, когда к нему присоединится сразу две молекулы медиатора и коагонист Глицин. Это как замок банковской ячейки, который открывается при наличии сразу трех ключей.

Глутаминовая и аспарагиновая кислоты не являются дефицитными, люди потребляют их в огромных количествах с пищей, к тому же они могут образовываться в самом организме, глицин – вроде бы тоже заменимая аминокислота, но для ее синтеза необходима фолиевая кислота (витамин B9), а вот ее в наших северных широтах мы можем не добрать, ибо содержится она в свежей зелени. Вспомните, когда и сколько вы съели зеленой травки? Веточку укропчика на колбаске? Вот для того, чтобы восполнить дефицит глицина и продается коммерческий препарат под тем же названием, который помогает работать NMDA-рецепторам и опосредованно, через открытие ионных каналов, улучшает память, обучаемость и интеллект.

Четыре белка формируют канал для проведения ионов через клеточную мембрану внутрь клетки. Внутри канала врастопырку стоит ион Магния – этакая задвижка, не пускающая ионы.

При присоединении медиатора (глутамата или аспартата) и аминокислоты-регулятора (глицина) канал начинает работать: ион Магния выходит наружу, задвижка отодвигается, внутрь клетки начинают поступать ионы Кальция и Натрия, а из клетки в межклеточное пространство выходит Калий.

В результате направленного движения ионов в принимающем нейроне возникает электрический ток, что приводит к ускорению передачи импульсов, а значит, головной мозг работает быстрее. После того, как глутамат подействовал, специальные клетки-изоляторы нервного волокна, именуемые астроцитами, поглощают его из межклеточного пространства при помощи транспортного белка GLT1. В астроцитах глутамат захватывает аммиак, токсичное вещество, которое всегда выделяется при работе, превращается в глутамин и в таком виде возвращается в нервное окончание, где он вновь готов к работе.

В канале, проходящем через мембрану клетки, имеются дополнительные места для присоединения регуляторных молекул, которые могут как ускорять движение заряженных частиц, так и блокировать их. Анестетик Кетамин работает, как смазка рецепторной двери, облегчая прохождение ионов через канал.

Внутриклеточная часть NMDA-рецептора является регуляторной, тут постоянно снуют ферменты, навешивая на канал дополнительные замки из остатков фосфорной кислоты или срезая их, что замедляет или ускоряет проведение ионов по каналу. Таким образом осуществляется тонкая настройка скорости движения ионов, а значит и скорости нервных процессов.

Этиловый спирт, содержащийся в алкогольных напитках, блокирует NMDA-рецепторы, т.е. выступает, как стопор, не дает им работать. Во внутриутробном периоде это приводит к гибели нейронов, что в дальнейшем может сказаться и на интеллекте, и на памяти.

В мозге новорожденных и молодых особей в составе NMDA-рецептора преобладает субъединица, образованная белком NR2B. Каналы, содержащие этот белок, остаются в открытом положении дольше, а нейроны с такими рецепторами быстрее реагируют на сигнал и длительнее находятся в рабочем режиме, что формирует быстрое и долговременное запоминание. Однако с возрастом субъединицы NR2B заменяются на NR2C и NR2A, что влияет на способность к обучению: информация воспринимается труднее, память работает хуже. Однако клетки с NR2B-субъединицами быстро погибают при перегрузке рецептора глутаматом, который в высоких концентрациях ядовит для нервной ткани, а вот белок NR2A защищает нейроны от токсического действия избытка глутамата.

NMDA-рецепторы не участвуют в возникновении быстрого и кратковременного возбуждения, с которыми связаны двигательные автоматизмы (например, рефлекс отдергивания), за них ответственны другие ионотропные рецепторы, прежде всего AMPA. NMDA-рецепторы заняты другой работой: обеспечивают усиленную и длительную активацию нейронов, что имеет значение при обучении и запоминании новой информации.

Существует гипотеза, что кратковременная память – суть ионные структуры, поэтому, чем сильнее сигнал, тем лучше кратковременная память. Ионные структуры нестойки, быстро разрушаются, что приводит к забыванию, «стиранию» информации из памяти.

Наибольшая плотность NMDA-рецепторов имеется в конечном мозге, прежде всего в гиппокампе, миндалевидном теле, полосатом теле, а также в коре больших полушарий. Гиппокамп – зона памяти, миндалевидное тело – зона эмоций и памяти, связанной с эмоциональными событиями, полосатое тело (стриатум) – регулирует мышечный тонус, объединяет в одно целое функционирование скелетной мускулатуры и внутренних органов. Кора головного мозга формирует человеческую личность и контролирует все процессы, происходящие в организме. Концентрация NMDA-рецепторов выше в ассоциативных зонах мозга, т.е. тех отделах, которые объединяют разные зоны коры между собой, по сравнению с проекционными зонами, т.е. тех, которые отдают приказы от головного мозга на двигательную мускулатуру.

В коре головного мозга NMDA-рецепторы сосредоточены в большей степени в следующих зонах:

  • Фронтальной – зона, ответственная за волю, мотивацию, социальное поведение
  • Инсула (островок) – отвечает за глубинные эмоции и речь
  • Древняя кора – осуществляет эмоциональный контроль за поведением
  • Парагиппокампальная извилина – участвует в формировании эмоций, обучения и памяти
  • Передняя поясная кора – зона, ответственная за анализ информации, решение интеллектуальных задач, связанных с концентрацией внимания, управляет поведением.
Читайте также:  На каком дне тест показывает беременность? Когда можно его делать

Это структуры обеспечивают способности к восприятию и переработке информации, формируют память, обеспечивают способность к запоминанию и обучению, сосредоточению, управляют волей и мотивацией, отвечают за социальное поведение и эмоциональные реакции.

Сбои в работе NMDA-рецепторов приводят к множеству тяжелых неврологических и психических нарушений, таких как эпилепсия, аутизм, шизофрения.

Глутамат и аспартат

Особенностью метаболизма глутамата в нервной ткани является его тесная связь с интенсивно функционирующим в этом органе циклом трикарбоновых кислот, что и позволяет считать его промежуточным продуктом энергетического метаболизма. Так, уже через 30 мин после инъекции меченой глюкозы более 70% радиоактивности растворимой фракции приходится на долю глутамата и его производных. Этому способствует чрезвычайно быстрое взаимопревращение глутамата и а-кетоглутарата в ЦНС. Высокий процент включения радиоактивности из глюкозы в аминокислоты мозга явился основанием для предположения, что утилизация глюкозы в этом органе в значительной степени происходит через биосинтез и окисление аминокислот.

Непосредственным предшественником для синтеза глутамата в мозге является а-кетоглутаровая кислота, которая может превращаться в глутамат или путем прямого восстановительного аминирования с участием глутаматдегидрогеназы, или путем переаминирования.

Энзим менее активен в мозге, чем в печени, присутствует в митохондриях, требует в качестве кофакторов пиридиннуклеотидов и активируется АДФ. Км этого энзима для аммония близок к 8 мМ. Реакция обратима, однако равновесие сильно сдвинуто в сторону прямой реакции, т.е. синтеза глутаминовой кислоты.

Таким образом, в головном мозге глутаматдегидрогеназная реакция участвует не столько в окислении глутамата, сколько в синтезе его из а-кетоглутаровой кислоты, обеспечивая тем самым непрерывное превращение свободного аммиака в аминоазот аминокислот. Основной же путь окисления глутамата в мозге – через переаминирование.

В митохондриях мозга 90% глутамата подвергается переаминированию с образованием аспартата. Фермент, катализирующий переаминирование глутамата с щавелевоуксусной кислотой, – аспартатаминотрансфераза является наиболее мощной трансаминазой головного мозга. Выделены два изоэнзима аспартатаминотрансферазы, локализованных в митохондриях и цитоплазме. Функциональная роль их различна. Митохондриальный фермент связан в основном с функционированием ЦТК, цитоплазматический определяет интенсивность глюконеогенеза.

Как уже отмечалось, путь метаболизма глутамата через переаминирование намного активнее дегидрогеназного. В регуляции соотношения между этими двумя путями, конкурирующими за один субстрат, важная роль принадлежит макроэргическим соединениям. В интактных митохондриях энзим взаимодействует по преимуществу с НАДФ+ и интенсивность реакции пропорциональна отношению НАДФ+/НАЦФН2. Макроэргические соединения способствуют превращению НДЦФ+ в НАДФН2 и тем самым подавляют дезаминирование глутамата. Наоборот, трансаминазный путь требует расходования макроэргических соединений. Поэтому выбор между этими двумя реакциями определяется энергетическими возможностями митохондрий.

При нормальном функционировании ЦТК дегидрогеназный путь окисления глутамата подавлен, а трансаминазный активно протекает. В результате уменьшения количества макроэргических соединений, например при добавлении к митохондриям разобщителя окислительного фосфорилирования 2,4-динитро-фенола, подавляется трансаминазный путь при одновременном резком усилении дегидрогеназного пути окисления глутамата.

Как возникает нервный импульс
Когда Бернштейн пришел к своей идее о природе «животного электричества», он, конечно, постарался объяснить на этой основе не только возникновение потенциала покоя, но и второе, главное явление электробиологии – явление возбуждения. К этом .

Этническая антропология и ее основные задачи
Этническая антропология (расоведение) изучает антропологический состав народов земного шара в настоящем и прошлом. Полученные в результате этого изучения материалы дают возможность выяснить родственные отношения между расами и историю их .

Развитие теорий о происхождении жизни
С незапамятных времен происхожде­ние жизни было загадкой для человече­ства. С мо­мента своего появления благо­даря труду человек начинает выделяться среди осталь­ных жи­вых су­ществ. Но спо­собность задать себе вопрос «откуда мы?» челове .

Нейромедиаторы, часть вторая: аденозин, ацетилхолин, глутамат и гамма-аминомасляная кислота

Первую часть рассказа о нейромедиаторах «Атлас» посвятил молодежным дофамину, норадреналину и серотонину. Во втором посте речь пойдет о менее известных медиаторах, которые выполняют важную невидимую работу: стимулируют и тормозят другие нейромедиаторы, помогают нам учиться и запоминать.

Ацетилхолин

Это первый нейромедиатор, который открыли ученые. Он отвечает за передачу импульсов двигательными нейронами — а значит, за все движения человека. В центральной нервной системе нейромедиатор берет на себя стабилизирующие функции: выводит мозг из состояния покоя, когда необходимо действовать, и наоборот, тормозит передачу импульсов, когда необходимо сосредоточиться. В этом ему помогают два типа рецепторов — ускоряющие никотиновые и тормозящие мускариновые.

Ацетилхолин играет важную роль в процессе обучения и формирования памяти. Для этого требуется как способность фокусировать внимание (и тормозить передачу отвлекающих импульсов), так и способность переключаться с одного предмета на другой (и ускорять реакцию). Активная работа мозга, например, при подготовке к экзамену или годовому отчету, приводит к повышению уровня ацетилхолина. Если мозг долгое время бездействует, специальный фермент ацетилхолинэстераза разрушает медиатор, и действие ацетилхолина слабеет. Идеальный для учебы, ацетилхолин будет плохим помощником в стрессовых ситуациях: это медиатор размышления, но не решительных действий.

Переизбыток ацетилхолина в организме вызывает спазм всех мышц, судороги и остановку дыхания — именно на такой эффект рассчитаны некоторые нервно-паралитические газы. Недостаток ацетилхолина приводит к развитию болезни Альцгеймера и других видов старческой деменции. В качестве поддерживающей терапии пациентам назначают препарат, блокирующий разрушение ацетилхолина — ингибитор ацетилхолинэстеразы.

Ген CHRNA3 кодирует никотиновый рецептор ацетилхолина, на который может воздействовать никотин. На первом этапе вещество действует на симпатическую систему организма, которая отвечает за спазм гладкой мускулатуры и сокращение сосудов. Поэтому у начинающих курильщиков сигареты вызывают скорее тошноту и бледность кожи, чем восторг. Но со временем никотин достигает клеток головного мозга и активизирует рецепторы ацетилхолина. Так как этим занимается и никотин, и ацетилхолин одновременно, мозг пытается скорректировать «двойную подачу», и через некоторое время нейроны головного мозга сокращают нормальное производство ацетилхолина. С этого момента никотин будет нужен курильщику по каждому поводу — с утра чтобы взбодриться, после совещания наоборот, чтобы успокоиться, после обеда — чтобы хоть немного подумать о вечном.

Полиморфизм гена CHRNA3 влияет на скорость формирования никотиновой зависимости и, как следствие, на риск развития рака лёгких, вызванного курением.

Аденозин

Все химические реакции в организме требуют затраты энергии. В качестве валюты в этом процессе используется молекула аденина с несколькими основаниями фосфорной кислоты. Сразу после «зарплаты» у вас на карточке окажется «триста рублей» — молекула аденозинтрифосфат с тремя остатками фосфорной кислоты. На каждую транзакцию уходит по сто рублей, соответственно, после первой «покупки» на счету останется всего двести рублей (аденозиндифосфат), после второй — сто рублей (аденозинмонофосфат), после третьей — ноль рублей.

Купюра в ноль рублей — и есть аденозин. Как нейромедиатор он отвечает за чувство усталости и засыпание. Во время сна купюрам в ноль-ноль рублей дорисовывают троечки, аденозин трансформируется в аденозинтрифосфат, и мы с новыми силами готовы вернуться к работе.

Есть способ обмануть «банковскую систему»: заблокировать рецепторы аденозина и уйти в кредит. Именно этим и занимается кофеин — позволяет игнорировать усталость и продолжать работать. При этом он не приносит настоящей энергии, а только дает тратить деньги, как если у вас всё ещё есть триста рублей. Как и за любой кредит, за перерасход приходится расплачиваться — большей усталостью, заторможенностью внимания, привыканием. Тем не менее, кофеиносодержащие кофе, чай и шоколад — самый популярный стимулятор в мире.

Всего известно четыре вида рецепторов аденозина, которые активируются и блокируются аденозином. Ген ADORA2A кодирует рецепторы аденозина второго типа, которые участвуют в активации противовоспалительных процессов, формировании иммунного ответа, регуляции боли и сна. От работы этого рецептора зависит скорость реакции организма на ранение и травму.

Глутамат

Глутаминовая кислота в форме глутамата — пищевая аминокислота, которая содержится в продуктах животного происхождения. Вкусовые рецепторы воспринимают глутамат как индикатор белковой пищи — а значит питательной и полезной — и оставляют заметку, что было вкусно, и надо повторить. В двадцатом веке японские ученые выяснили принцип восприятия этого вкуса (они назвали его «умами» — вкусный), и со временем глутамат натрия стал популярной пищевой добавкой. Именно благодаря ему иногда сложно устоять перед соблазном съесть лапшу доширак. Как пищевая добавка глутамат не влияет напрямую на работу нейронов, поэтому его «передозировка» в худшем случае обойдется головной болью.

Глутамат — это не только пищевая аминокислота, но и важный нейромедиатор, рецепторы которого есть у 40% нейронов головного мозга. Он не имеет собственной «смысловой нагрузки», а только ускоряет передачу сигнала другими рецепторами — дофаминовыми, норадреналиновыми, серотониновыми и т.д. Эта функция позволяет глутамату формировать синаптическую пластичность — способность синапсов регулировать свою активность в зависимости от реакции постсинаптических рецепторов. Этот механизм лежит в основе процесса обучения и работы памяти.

Снижение активности глутамата приводит к вялости и апатии. Переизбыток — к «перенапряжению» нервных клеток и даже их гибели, как если бы на электрическую сеть дали большую нагрузку, чем она способна выдержать. «Перегорание» нейронов — эксайтотоксичность — наблюдается после приступов эпилепсии и при нейродегенеративных заболеваниях.

Две группы генов кодируют белки-транспортеры глутамата. Гены группы EAAT отвечают за натрий-зависимые белки — те самые, которые участвуют в процессе запоминания. Мутации в генах этой группы повышают риск инсульта, болезни Альцгеймера, болезни Гентингтона, бокового амиотрофического склероза. Мутации в генах везикулярных белков-транспортеров группы VGLUT ассоциированы с риском шизофрении.

Гамма-аминомасляная кислота

У каждой инь есть свой ян, и у глутамата есть вечный его противник, с которым он тем не менее неразрывно связан. Речь идет о главном тормозном нейромедиаторе — гамма-аминомасляной кислоте (ГАМК или GABA). Так же как и глутамат, ГАМК не вносит новых цветов в палитру мозговой активности, а только регулирует активность других нейронов. Так же как и глутамат, ГАМК охватил сетью своих рецепторов около 40% нейронов головного мозга. И глутамат, и ГАМК синтезируются из глутаминовой кислоты и по существу являются продолжением друг друга.

Для описания эффекта ГАМК идеально подходит поговорка «тише едешь — дальше будешь»: тормозящий эффект медиатора позволяет лучше сосредоточиться. ГАМК снижает активность самых разных нейронов, в том числе связанных с чувством страха или тревоги и отвлекающих от основной задачи. Высокая концентрация ГАМК обеспечивает спокойствие и собранность. Снижение концентрации ГАМК и нарушение баланса в вечном сопротивлении с глутаматом приводит к синдрому дефицита внимания (СДВГ). Для повышения уровня ГАМК хорошо подходят прогулки, йога, медитации, для снижения — большинство стимуляторов.

У гамма-аминомасляной кислоты два типа рецепторов — быстрого реагирования GABA-A и более медленного действия GABA-B. Ген GABRG2 кодирует белок рецептора GABA-A, который резко снижает скорость передачи импульсов в головном мозге. Мутации в гене связаны с эпилепсией и фебрильными судорогами, которые могут возникать при высокой температуре.

Если дофамин, серотонин и норадреналин — голливудские актеры большой нейронной киноиндустрии, то герои второй части рассказа о нейромедиаторах скорее работают за кадром. Но без их незаметного вклада большое кино было бы совсем другим.

В следующей части «Атлас» расскажет о пептидах и опиодиах — эта тема требует отдельного разговора.

Добавить комментарий