Апоптоз: определение, функция, примеры и тест

Медицинская учебная литература

Учебная медицинская литература, онлайн-библиотека для учащихся в ВУЗах и для медицинских работников

Апоптоз и некроз

Завершающим этапом повреждений тканей организма является их гибель. Однако сами повреждения связаны не только с патологическими процессами, возникающими в организме, но и со старением функционирующих биологических структур. Вместе с тем механизмы гибели клеток и тканей в условиях нормы и в условиях патологии значительно отличаются друг от друга и имеют разное морфологическое выражение.

АПОПТОЗ

Апоптоз — физиологическая гибель клеток в живом организме.

Общая характеристика.

Все ткани организма имеют свой срок жизни, после истечения которого и прекращения функции они должны погибнуть и на их месте появляются новые, аналогичные погибшим, клетки и ткани. Сроки жизни у разных живых структур различны. Они определены в их геноме, т. е. генетически запрограммированы. Поэтому апоптоз является генетически запрограммированной гибелью клеток. Это важнейший физиологический процесс, позволяющий организму постоянно сохранять функции своих структур на определенном уровне. Кроме того, в процессе образования новых клеток и внеклеточных структур возникают генетические ошибки, происходят мутации и появляются клетки, отличающиеся от клеток организма. Они должны быть немедленно уничтожены, и их гибель также осуществляется с помощью апоптоза, который является и механизмом генетического контроля синтеза веществ и клеток организма. Таким образом, апоптоз как физиологический процесс протекает непрерывно на протяжении всей жизни человека, и биологический смысл его заключается в поддержании постоянства клеток и тканей организма, т. е. тканевого гомеостаза. С помощью апоптоза происходит инволюция органов и тканей после завершения ими своих физиологических функций, например атрофия вилочковой железы после окончания формирования иммунной системы, атрофия половой системы женщин после завершения детородной функции, атрофия органов и тканей при старении человека и др.

Вместе стем апоптоз может развиваться и в условиях патологии — в тех случаях, когда повреждающие факторы действуют на гены, контролирующие включение программы апоптоза. Обычно это происходит с помощью определенных веществ — цитокинов, различных факторов роста, гормонов, активизирующихся при заболеваниях и функционирующих на молекулярном уровне. Эту особенность апоптоза нередко пытаются использовать в клинике. Например, в онкологии постоянно идет поиск возможностей стимулировать апоптоз в злокачественных опухолях с тем, чтобы активизировать распад опухолевых клеток, и это весьма перспективный путь онкотерапии.

Морфология апоптоза.

Апоптоз развивается в отдельных клетках, которые вначале теряют контакты с соседними клетками, затем уменьшаются в размерах, в их ядрах конденсируется хроматин. ядра становятся изрезанными, плотными и фрагментируются на отдельные глыбки. Одновременно происходит распад цитоплазмы, в которой сохраняются в конденсированной форме внутриклеточные структуры. В результате клетка распадается на апоптозные тельца, каждое из которых окружено мембраной. Апоптозные тельца очень быстро поглощаются окружающими клетками, иногда макрофагами. Однако в ответ на апоптоз никогда не развивается воспалительная реакция и на месте погибших клеток воспроизводятся клетки той же ткани. Следует подчеркнуть, что апоптозу подвергаются лишь клетки, но не ткани в целом.

НЕКРОЗ

Некроз — гибель клеток и тканей в результате патологических воздействий.

Причины некроза разнообразны, однако их можно объединить в пять групп:

  1. травматический некроз, который является результатом прямого действия на ткань физических или химических факторов (механических, температурных, радиационных, кислот, щелочей и др.);
  2. токсический некроз развивается при действии на ткани токсических факторов бактериальной или иной природы;
  3. трофоневротический некроз, который связан с нарушениями иннервации тканей при заболеваниях центральной или периферической нервной системы;
  4. аллергический некроз — следствие иммунных реакций немедленной или замедленной гиперчувствительности;
  5. сосудистый некроз, обусловленный прекращением циркуляции крови в артериях, реже — в венах.

По консистенции мертвых масс некроз может быть коагуляционным, казеозным и колликвационным.

Коагуляционный (плотный) некроз возникает при коагуляции распавшегося белка, обычно в мышечных тканях и в большинстве внутренних органов.

Разновидностью коагуляционного некроза является казеозный (творожистый) некроз, массы которого имеют замазкообразную консистенцию; развивается при некоторых видах воспаления.

Колликвационный некроз развивается в тканях, богатых жидкостью, например в головном мозге.

По механизму действия фактора, вызвавшего некроз, выделяют:

  • прямой некроз, который возникает при непосредственном действии на ткань причины, вызывающей ее гибель, — травма, токсины, высокая или низкая температура и т. п.;
  • непрямой некроз, когда причина гибели ткани связана с нарушениями функций сосудов, нервов или с аллергическими реакциями.

Некрозу предшествует период умирания, он никогда не возникает мгновенно. Период умирания может быть длительным или быстрым. В этот период в клетках и во внеклеточном матриксе развиваются изменения, представляющие собой тот или иной вид дистрофии, чаще белковый. Эти изменения называются некробиозом, или парабиозом. Функции клеток и органов при этом ослабевают и прекращаются, но на начальных этапах процесса они могут восстановиться, если ликвидирована причина, вызвавшая некробиоз. Если же причина продолжает действовать, дистрофия становится необратимой, некробиоз переходит в некроз и какие-либо функции прекращаются. Некротизированные ткани под действием гидролитических ферментов подвергаются разложению — аутолизу. В области очага некроза развивается воспаление как ответная реакция организма на гибель его части.

Морфология некроза зависит от его причины, но общим является изменение цвета некротизированной ткани и ее консистенции. Цвет некротических масс зависит от наличия примесей крови и различных пигментов. Мертвая ткань бывает белой или желтоватой, нередко окружена красно-бурым венчиком. При гнилостном расплавлении мертвая ткань издает характерный дурной запах. Микроскопические признаки некроза складываются из необратимых изменений ядер и цитоплазмы клеток. В период некробиоза клетки теряют воду, поэтому при некрозе ядра сморщиваются и уплотняются — развивается кариопикноз. Затем нуклеиновые кислоты в виде отдельных глыбок выходят из ядра в цитоплазму клетки — происходит распад ядра — кариорексис. Наконец, ядерное вещество растворяется — наступает кариолизис. Исчезновение клеточных ядер — один из основных признаков некроза. Та же динамика гибели наблюдается в цитоплазме, в которой развиваются плазморексис и плазмолиз. Наконец, растворяется вся клетка — происходит цитолиз.

При некрозе интерстициальной и сосудистой тканей экстрацеллюлярный матрикс набухает и расплавляется, волокнистые структуры подвергаются фибриноидному некрозу и уплотняются. Образовавшиеся некротические массы носят название некротический детрит. Вокруг очага некроза, отграничивая его от живых тканей, развивается демаркационная линия, представляющая собой зону воспаления. Эта линия имеет большое значение в хирургической практике, так как указывает на возможные пределы иссечения погибших тканей или уровень ампутации конечности.

Исходы некроза.

Благоприятный, при котором происходит ферментативное расплавление некротизированных тканей, после чего они подвергаются организации, т. е. замещению дефекта соединительной тканью, обычно с образованием рубца, или инкапсуляции, т. е. отграничению некротизированного участка соединительной тканью. При этом нередко некротизированные массы подвергаются петрификации. На месте колликвационного некроза образуется полость — киста.

Неблагоприятный, когда некроз ткани или органа заканчивается смертью больного, например инфаркт миокарда или некроз поджелудочной железы. Кроме того, некротизированные ткани могут подвергаться гнойному расплавлению, при котором токсичные продукты некроза и аутолиза всасываются в кровь, развивается интоксикация, которая также может привести к смерти.

Клинико-морфологические формы некроза.

В зависимости от локализации и особенностей некроза выделяют его следующие клинико-морфологические формы.

Гангрена — некроз тканей, соприкасающихся с внешней средой. При этом железо гемоглобина, находящегося в некротизированных тканях, соединяется с сероводородом воздуха и образуется сульфид железа, придающий некротизированным тканям черный цвет. Гангрена развивается в коже, конечностях, кишечнике, легких, влагалище, матке и т. д. Имеется несколько разновидностей гангрены (рис. 12):

  • сухая гангрена развивается в тканях с малым содержанием жидкости, при этом ткани могут подвергаться мумификации. Она характерна для конечностей, возникает на разных участках тела при их отморожении, ожогах, при тяжелых инфекциях;
  • влажная гангрена обычно развивается в тканях, богатых жидкостью, поэтому встречается в легких, матке, кишечнике. У ослабленных детей, страдающих корью или скарлатиной, иногда развивается влажная гангрена щеки — нома;
  • анаэробная или газовая гангрена возникает при тяжелых, обычно массивных ранениях или травмах конечностей при попадании врану бактерий — анаэробов. Внекротизированных мышцах развивается коагуляционный некроз, они становятся грязно-серыми, при надавливании из них выделяются пузырьки газа.

Пролежень имеет трофоневротическое происхождение, возникает на участках кожи, подкожной клетчатки или слизистых оболочек. подвергающихся давлению у ослабленных больных, страдающих онкологическими, сердечно-сосудистыми и некоторыми инфекционными заболеваниями. Пролежни могут возникать вобласти крестца, ягодиц, пяточных костей, а также в трахее или гортани от давления трахеостомической трубки после операции трахеостомии.

Рис. 12. Гангрена. Влажная гангрена кожи бедра (а) и стопы (б); сухая гангрена стопы (в), предплечья и кисти (г).

Секвестр — участок омертвевшей ткани, свободно располагающийся среди живых тканей, обычно сопровождающийся гнойным воспалением. Особенно часто секвестром является некротизированный фрагмент кости при остеомиелите.

Рис. 13. Инфаркт. а — белые (ишемические) инфаркты селезенки; б — красные (геморрагические) инфаркты легкого; в — микроскопическая картина геморрагического инфаркта легкого; г — ишемические инфаркты почки; д — микроскопическая картина ишемического инфаркта почки. Участки некроза тканей показаны стрелками.

Инфаркт — некроз ткани внутренних органов, развивающийся в результате острого нарушения кровообращения в них при тромбозе, эмболии, длительном спазме артерий. Наиболее яркими примерами этого вида некроза являются инфаркты миокарда, головного мозга, легких, почек, селезенки (рис. 13). Инфаркты различают по форме и цвету, что зависит от особенностей органа и архитектоники его сосудистой системы:

  • по форме
    • — клиновидная;
    • — неправильная.
  • по цвету
    • — белый;
    • — красный;
    • — белый с геморрагическим венчиком.

Сравнительная характеристика апоптоза и некроза

Отличия апоптоза от некроза связаны с различиями в их распространенности, генетических, биохимических, морфологических и клинических проявлениях:

  • апоптоз — физиологический вид смерти, некроз возникает в условиях патологии;
  • апоптоз генетически запрограммирован, некроз развивается под воздействием различных повреждающих причин и не связан с геномом клетки;
  • апоптоз распространяется только на отдельные клетки, некроз развивается на территории ткани и даже целого органа;
  • апоптоз не сопровождается дистрофическими изменениями клеток, некрозу предшествует дистрофия, имеющая характер некробиоза;
  • апоптоз не сопровождается воспалением, вокруг некроза обязательно развивается воспалительная реакция;
  • апоптоз заканчивается фагоцитозом апоптозных телец соседними клетками, некроз заканчивается аутолизом погибшей ткани;
  • после апоптоза восстанавливаются клетки, аналогичные погибшим, на месте некроза обычно разрастается рубцовая соединительная ткань;
  • апоптоз не сопровождается активацией внутриклеточных гидролитических ферментов, некроз развивается с помощью гидролаз;
  • апоптоз не имеет клинических проявлений, некроз сопровождается выраженной клинической симптоматикой.

Апоптоз и некроз — два разных варианта гибели клеток и тканей в живом организме, хотя некоторые патогенные факторы, способные оказывать воздействие на генетический код, могут вызывать апоптоз. Однако при этом апоптоз все-таки остается физиологическим механизмом смерти, но активизирующимся в условиях определенной патологии.

Все описанные изменения — дистрофии, апоптоз и некроз — носят характер типовых (или стереотипных) реакций, которыми организм отвечает на различные воздействия, и те или иные их сочетания возникают при любых болезнях, что необходимо учитывать при назначении лечения.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Апоптоз. Определение. Стадии апоптоза.

Апоптоз – это программированная клеточная смерть (инициирующаяся под действием вне- или внутриклеточных факторов) в развитии которой активную роль принимают специальные и генетически запрограммированные внутриклеточные механизмы. Он, в отличие от некроза активный процесс, требующий определенных энергозатрат. Первоначально пытались разграничить понятия «программированная клеточная гибель» и «апоптоз»: к первому термину относили устранение клеток в эмбриогенезе, а ко второму – программированную смерть только зрелых дифференцированных клеток. В настоящее время выяснилось, что никакой целесообразности в этом нет (механизмы развития клеточной гибели одинаковы) и два понятия превратились в синонимы, хотя это объединение и не бесспорно.

Прежде чем приступить к изложению материала о роли апоптоза для жизнедеятельности клетки (и организма) в норме и патологии, мы рассмотрим механизм апоптоза. Их реализацию можно представить в виде поэтапного развития следующих стадий:

Читайте также:  Атавизм это - определение и примеры

1 стадиястадия инициации (индукции).

В зависимости от происхождения сигнала, стимулирующего апоптоз, различают:

внутриклеточные стимулы апоптоза. Среди них к наиболее известным относят – разные виды облучения, избыток Н + , оксид азота, свободные радикалы кислорода и липидов, гипертермия и др. Все они могут вызывать различные повреждения хромосом (разрывы ДНК, нарушения ее конформации др.) и внутриклеточных мембран (особенно митохондрий). То есть в данном случае поводом для апоптоза служит «неудовлетворительное состояние самой клетки» (Мушкамбиров Н.П., Кузнецов С.Л., 2003). Причем, повреждение структур клеток должно быть достаточно сильным, но не разрушительным. У клетки должны сохраниться энергетические и материальные ресурсы для активации генов апоптоза и его эффекторных механизмов. Внутриклеточный путь стимуляции программированной смерти клетки можно обозначить как «апоптоз изнутри»;

трансмембранные стимулы апоптоза, т.е., в этом случае он активируется внешней «сигнализацией», которая передается через мембранные или (реже) внутриклеточные рецепторы. Клетка может быть вполне жизнеспособной, но, с позиции целостного организма или «ошибочной» стимуляции апоптоза, она должна погибнуть. Этот вариант апоптоза получил название «апоптоз по команде».

Трансмембранные стимулы подразделяются на:

«отрицательные» сигналы. Для нормальной жизнедеятельности клетки, регуляции ее деления и размножения необходимо воздействие на нее через рецепторы различных БАВ: факторов роста, цитокинов, гормонов. Среди прочих эффектов, они подавляют механизмы клеточной гибели. И естественно, дефицит или отсутствие данных БАВ активирует механизмы программированной смерти клетки;

«положительные» сигналы. Сигнальные молекулы, такие как ФНОα, глюкокортикоиды, некоторые антигены, адгезивные белки и др., после взаимодействия с клеточными рецепторами могут запускать программу апоптоза.

На клеточных мембранах находится группа рецепторов, в задачу которых передача сигнала к развитию апоптоза является основной, возможно даже единственной функцией. Это, например, белки группы DR (death receptos – «рецепторы смерти»): DR3, DR4, DR5. Наиболее хорошо изучен Fas-рецептор, появляющийся на поверхности клеток (гепатоцитах) спонтанно или под влиянием активации (зрелые лимфоциты). Fas-рецептор при взаимодействии с Fas-рецептором (лигандом) Т-киллера запускает программу смерти клетки мишени. Однако, взаимодействие Fas-рецептора с Fas-лигандом в областях, изолированных от иммунной системы, заканчивается гибелью самого Т-киллера (см. нижеигандом в областях, изолированных от иммунной системы, заканчивается гибелью самого Т-киллера ()ожно000000000000000000000000000).

Следует помнить, что некоторые сигнальные молекулы апоптоза, в зависимости от ситуации могут наоборот, блокировать развитие программированной смерти клеток. Амбивалентность (двойственное проявление противоположных качеств) характерна для ФНО, ИЛ-2, интерферона γ и др.

На мембранах эритроцитов, тромбоцитов, лейкоцитов, а так же клеток легкого и кожи обнаружены особые антигены-маркеры. На них синтезируются физиологические аутоантитела, и они, выполняя роль опсонинов, способствуют фагоцитозу этих клеток, т.е. гибель клеток происходит путемаутофагоцитоза. Выяснилось, что антигены-маркеры появляются на поверхности «старых» (прошедших свой путь онтогенетического развития) и поврежденных клетках, молодые и неповрежденные клетки их не имеют. Данные антигены получили название «антигены-маркеры стареющих и поврежденных клеток» или «белок третьей полосы». Появление белка третьей полосы контролируется геномом клетки. Следовательно, аутофагоцитоз можно рассматривать, как вариант запрограммированной гибели клеток.

Смешанные сигналы. Это сочетанное воздействие сигналов первой и второй группы. Например, апоптоз происходит с лимфоцитами, активированных митогоном (положительный сигнал), но не вступивших в контакт с АГ (отрицательный сигнал).

2 стадиястадия программирования (контроля и интеграции механизмов апоптоза).

Для этой стадии характерно два, диаметрально противоположных процесса, наблюдающихся после инициации. Происходит либо:

реализация пускового сигнала к апоптозу через активацию его программы (эффекторами являются каспазы и эндонуклеазы);

блокируется эффект пускового сигнала апоптоза.

Различают два основных, но не исключающих друг друга, варианта исполнения стадии программирования (рис. 14):

Рис. 14. Каспазный каскад и его мишени

R– мембранный рецептор; К – каспазы;AIF– митохондриальная протеаза; Цит. С – цитохром с;Apaf-1 – цитоплазматический белок;IAPs– ингибиторы каспаз

1. Прямая передача сигнала (прямой путь активации эффекторных механизмов апоптоза минуя геном клетки) реализуется через:

адапторные белки. Например, так осуществляется запуск апоптоза Т-киллером. Он активирует каспазу-8 (адапторный белок). Аналогично может действовать и ФНО;

цитохром С и протеазу ΑIF (митохондриальная протеаза). Они выходят из поврежденной митохондрии и активируют каспазу-9;

гранзимы. Т-киллеры синтезируют белок перфорин, который образует каналы в плазмолемме клетки-мишени. Через эти каналы в клетку проникают протеолитические ферменты гранзимы, выделяемые все тем же Т-киллером и они запускают каскад каспазной сети.

2. Опосредованная передача сигнала. Она реализуется с помощью генома клетки путем:

репрессии генов, контролирующих синтез белков-ингибиторов апоптоза (гены Bcl-2, Bcl-XL и др). Белки Bcl-2 в нормальных клетках входят в состав мембраны митохондрий и закрывают каналы по которым из этих органоидов выходят цитохром С и протеаза AIF;

экспрессии, активации генов, контролирующих синтез белков-активаторов апоптоза (гены Bax, Bad, Bak, Rb, P53 и др.). Они, в свою очередь активируют каспазы (к-8, к-9).

На рис. 14 представлена примерная схема каспазного принципа активации каспаз. Видно, что откуда бы не запускался каскад, его узловым моментом является каспаза 3. Она активируется и каспазой 8 и 9. Всего в семействе каспаз – более 10 ферментов. Локализуются в цитоплазме клетки в неактивном состоянии (прокаспазы). Положение всех каспаз в данном каскаде до конца не выяснено, поэтому на схеме ряд из них отсутствует. Как только активируются каспазы 3,7,6 (возможно и их другие типы) наступает 3 стадия апоптоза.

3 стадиястадия реализация программы (исполнительная, эффекторная).

Непосредственными исполнителями («палачами» клетки) являются выше указанные каспазы и эндонуклеазы. Местом приложения их действия (протеолиза) служат (рис. 14):

цитоплазматические белки – белки цитоскелета (фодрин и актин). Гидролизом фодрина объясняют изменение поверхности клетки – «гофрирование» плазмолеммы (появление на ней впячиваний и выступов);

белки некоторых цитоплазматических регуляторных ферментов: фосфолипазы А2, протеинкиназы С и др.;

ядерные белки. Протеолиз ядерных белков занимает основное место в развитии апоптоза. Разрушаются структурные белки, белки ферментов репликации и репарации (ДНК-протеинкиназы и др.), регуляторные белки (рRb и др.), белки-ингибиторов эндонуклеаз.

Иннактивация последней группы – белков ингибиторов эндонуклеаз приводит к активации эндонуклеаз, второму «орудию» апоптоза. В настоящее время эндонуклеазы и в частности, Са 2+ , Мg 2+ -зависимая эндонуклеаза, рассматривается как центральный фермент программируемой смерти клетки. Она расщепляет ДНК не в случайных местах, а только в линкерных участках (соединительные участки между нуклеосомами). Поэтому хроматин не лизируется, а только фрагментируется, что определяет отличительную, структурную черту апоптоза.

Вследствие разрушения белка и хроматина в клетке формируются и от нее отпочковываются различные фрагменты – апоптозные тельца. В них находятся остатки цитоплазмы, органелл, хроматина и др.

4 стадиястадия удаления апоптозных телец (фрагментов клетки).

На поверхности апоптозных телец экспрессируются лиганды, они распознаются рецепторами фагоцитов. Процесс обнаружения, поглощения и метаболизирования фрагментов погибшей клетки происходит сравнительно быстро. Это способствует избежать попадания содержания погибшей клетки в окружающую среду и тем самым, как отмечено выше, воспалительный процесс не развивается. Клетка уходит из жизни «спокойно», не беспокоя «соседей» («тихий суицид»).

Программированная клеточная гибель имеет важное значение для многих физиологических процессов. С апоптозом связаны:

поддержание нормальных процессов морфогенеза – запрограммированная смерть клеток в процессе эмбриогенеза (имплантации, органогенеза) и метаморфоза;

поддержание клеточного гомеостаза (в том числе ликвидация клеток с генетическими нарушениями и инфицированных вирусами). Апоптозом объясняется физиологическая инволюция и уравновешивание митозов в зрелых тканях и органах. Например, гибель клеток в активно пролиферирующих и самообновляющихся популяциях – эпителиоцитов кишечника, зрелых лейкоцитов, эритроцитов. Гормонально-зависимая инволюция – гибель эндометрия в конце менструального цикла;

селекция разновидностей клеток внутри популяции. Например, формирование антигенспецифической составляющей иммунной системы и управление реализацией ее эффекторных механизмов. С помощью апоптоза происходит выбраковка ненужных и опасных для организма клонов лимфоцитов (аутоагрессивных). Сравнительно недавно (Griffith T.S., 1997) показали значение программированной гибели клеток в защите «иммунологически привилегированных» зон (внутренние среды глаза и семенников). При прохождении гисто-гематических барьеров данных зон (что случается редко), эффекторные Т-лимфоциты гибнут (см. выше). Включение механизмов их смерти обеспечивается при взаимодействии Fas-лиганда барьерных клеток с Fas-рецепторами Т-лимфоцита, тем самым предотвращается развитие аутоагрессии.

Роль апоптоза в патологии и виды различных заболеваний связанных с нарушением апоптоза представлены в виде схемы (рис. 15) и таблицы 1.

Конечно, значение апоптоза в патологии меньше чем некроза (возможно, это связано с недостаточностью таких знаний). Однако, проблема его в патологии имеет и несколько иной характер: она оценивается по степени выраженности апоптоза — усиление или ослабление при тех или иных болезнях.

Апоптоз: определение, функция, примеры и тест

Апоптоз является другим вариантом гибели клеток.

Апоптоз:
• форма гибели отдельных клеток,
• возникающая под действием вне- или внутриклеточных факторов,
• осуществляющаяся путём активации специализированных внутриклеточных процессов,
• регулируемых определёнными генами.

Таким образом, апоптоз — программированная гибель клетки. В этом его принципиальное отличие от некроза. Другое принципиальное отличие апоптоза от некроза состоит в том, что программу апоптоза запускает информационный сигнал, тогда как некроз клетки развивается под влиянием повреждающего агента. В финале некроза происходит лизис клетки и освобождение её содержимого в межклеточное пространство, тогда как апоптоз завершается фагоцитозом фрагментов разрушенной клетки. Некроз — всегда патология, тогда как апоптоз наблюдается в ходе многих естественных процессов, а также при адаптации клетки к повреждающим факторам. Апоптоз — в отличие от некроза — энергозависим и требует синтеза РНК и белков.

Проявления апоптоза

При апоптозе цитоплазма клетки уплотняется, конденсируется хроматин, ядро подвергается пикнозу с последующим кариорексисом. Фрагментации ядра предшествует межнуклеосомная упорядоченная деградация ядерной ДНК с образованием последовательно уменьшающихся фрагментов длиной до 180 пар оснований. Распад ДНК на отдельные нуклеосомные фрагменты с разрывами нук-леотидной цепочки приводит к появлению фрагментов ДНК разной длины. В конечной стадии апоптоза фрагментации подвергаются сами клетки с формированием так называемых апоптозных телец — окружённых мембраной фрагментов клеток, включающих остатки органелл, цитолеммы, цитоплазмы, хроматина. Клетки, вошедшие в апоптоз, и апоптозные тельца фагоцитируются макрофагами и гранулоцитами; фагоцитоз при этом не сопровождается местным воспалением.

Механизм апоптоза.
Два пути развития апоптоза отличаются индукцией и регуляцией, но оба заканчиваются активацией эффекторных каспаз.
При внутреннем пути развития апоптоза индукция вовлекает сенсоры и эффекторы семейства Bcl-2, которые индуцируют выход митохондриальных белков.
Показаны также некоторые антиапоптозные белки (регуляторы), которые ингибируют митохондриальный выход и активацию цитохром С-зависимой каспазы во внутреннем пути.
При внешнем пути развития апоптоза инициация рецепторов смерти напрямую вызывает активацию каспаз.
Регуляторы активации каспаз, опосредованные рецептором смерти, не показаны.
TNF — фактор некроза опухоли; ДНК — дезоксирибонуклеиновая кислота; ЭПР — эндоплазматический ретикулум.

Примеры апоптоза

Запрограммированная гибель клеток — естественный процесс массовой гибели клеток и элиминации целых клонов в ходе эмбрионального развития, гистогенеза и морфогенеза органов. В данном случае речь идёт о гибели клеток, не достигших состояния терминальной дифференцировки. Примером служит запрограммированная гибель нейробластов (от 25 до 75%) на определённых этапах развития мозга.

Гибель клеток, выполнивших свою функцию, наблюдают при удалении клонов иммунокомпетентных клеток при иммунном ответе. Эозинофилы погибают после дегрануляции. Клетки, выполнившие свою функцию, гибнут путём апоптоза. Механизм гибели клеток, достигших состояния терминальной дифференцировки и выполнивших свою функцию, изучен недостаточно, но ясно, что он генетически детерминирован. Так, экспрессия гена fos служит маркёром терминальной дифференцировки и одновременно предшествует гибели клеток.

Дегенерация. При некоторых патологических состояниях наблюдают относительно избирательную гибель клеток, например, в нервной системе при боковом амиотрофическом склерозе (болезнь Шарко) и болезни Алъцхаймера. Врождённая форма бокового амиотрофического склероза обусловлена мутацией гена Cu/Zn-супероксиддисмутазы 1. Продукт дефектного гена не способен ингиби-ровать ИЛ-1р-конвертирующий фермент и образующийся ИЛ-1р воздействует на двигательные нейроны и вызывает их апоптоз.

Читайте также:  Паратиреоидный гормон (ПТГ), паратгормон - регулятор кальция в крови

Ликвидации аутоагрессивных Т-клеток в процессе развития тимуса или удаления лимфоцитов после реализации иммунного ответа; устранение клеток тканей, подвергшихся воздействию цитотоксических Т-лимфоцитов или естественных киллеров.

Старение (например, путём гормонозависимой инволюции клеток эндометрия и атрезии фолликулов яичников у женщин в менопаузе, ткани простаты и яичек у пожилых мужчин).

Трансфекция. Внедрение в клетку нуклеиновой кислоты вируса (например, при вирусном гепатите, миокардите, энцефалите, СПИДе).

Повреждение клетки. Воздействие на клетку агентов, повреждающих её, но не приводящих к некрозу (например, высокой температуры, радиации, цитоста-тиков, гипоксии). Увеличение интенсивности этих воздействий приводит как обычно к некрозу.

Опухолевый рост (апоптоз выявляется как при формировании опухолевого узла, так и при его деструкции).

Апоптоз: заказное самоубийство

Само название этого типа клеточной смерти – апоптоз, что в переводе с греческого означает «падающие листья», говорит о том, что он является такой же естественной и неотъемлемой чертой многоклеточного организма, как сезонная смена листвы для деревьев. Апоптоз запускается, когда клетка имеет серьезные повреждения, ведущие к нарушению ее функций: в результате слаженной работы специальных систем, необратимо повреждающих основные клеточные структуры, такая клетка заканчивает жизнь «самоубийством».

Все клетки многоклеточных существ несут в себе потенциальную способность к апоптозу, так же как японские самураи всю жизнь носят с собой меч. И если по каким-то причинам тонкий механизм апоптоза разлаживается, последствия для организма могут оказаться самыми катастрофическими. Например, раковые клетки, блокируя систему апоптоза, приобретают бессмертие. Поэтому изучение механизмов клеточной самоликвидации является важнейшим направлением современных биомедицинских исследований: раскрытие тайн апоптоза поможет в разработке новых лекарств для борьбы с самыми тяжелыми и трудноизлечимыми болезнями современности

Каждый день и каждый час в нашем организме погибают миллионы клеток. Отшелушиваются ороговевшие клетки покровного эпителия, быстро изнашиваются и гибнут клетки слизистой ткани, выстилающей пищеварительный тракт, лейкоциты – белые клетки крови, находят свою смерть в борьбе с патогенами… Но как наше тело избавляется от специализированных клеток, когда в результате накопившихся внутренних повреждений они становятся неспособными выполнять свои функции? Одним из самых парадоксальных и удивительных механизмов, контролирующих жизнеспособность многоклеточного организма, является апоптоз – клеточная самоликвидация.

Регулярная, генетически запрограммированная гибель отдельных клеток необходима для нормального функционирования организма в целом. Все клетки многоклеточных существ обладают аппаратом апоптоза, так же как японские самураи всю жизнь носят с собой меч. Однако у этого естественного процесса есть и обратная сторона: если по каким-то причинам тонкий механизм апоптоза разлаживается, последствия для организма могут оказаться самыми катастрофическими.

Нарушения в запуске апоптоза ведут к возникновению ряда серьезных заболеваний, в том числе аутоиммунных и онкологических. Например, раковые клетки, блокируя систему апоптоза, приобретают бессмертие. Поэтому изучение механизмов клеточной самоликвидации является важнейшим направлением современных биомедицинских исследований: раскрытие тайн апоптоза поможет в разработке новых лекарств для борьбы с самыми тяжелыми и трудноизлечимыми болезнями современности.

Ферменты-киллеры

Итак, клетка выполнила свои функции, «постарела» и готова к самоуничтожению во благо всему организму. Кто же выполняет это «заказное» самоубийство?

Оказывается, в этом «детективе» про апоптоз имеются и свои затаившиеся киллеры. В этой роли выступают особые ферменты – каспазы, имеющиеся в каждой клетке (Salvesen, 2002; Nicholson, 1999; Lavrik et al., 2005). Обычно каспазы присутствуют в клеточной цитоплазме в виде неактивных предшественников (прокаспаз). Прокаспазы не проявляют никакой активности, мирно сосуществуя в клетке вместе с другими белками, однако при поступлении сигнала на самоуничтожение они превращаются в настоящие белки-убийцы.

«Смена имиджа» безобидных прокаспаз происходит так: белок расщепляется на три фрагмента, один из которых (продомен) отщепляется, а остальные соеди­няются с двумя аналогичными фрагментами другой прокаспазы. Благодаря такой структурной перестройке образуется активный гетеротетрамер каспазы, в котором аминокислоты формируют центр фермента, выполняющий каталитическую функцию (Salvesen, 2002).

Образовавшиеся активные каспазы наконец показывают свое настоящее лицо: они начинают расщеплять все белки, которые содержат остатки аминокислоты аспарагина (при условии, что рядом располагаются определенным образом остатки еще трех других аминокислот). В результате такой «подрывной» деятельности в клетке оказываются поврежденными сотни белков. К числу наиболее известных мишеней каспаз относятся белки цитоскелета (структурного каркаса клетки); белки, отвечающие за репарацию (восстановление) поврежденной ДНК; структурные белки оболочки клеточного ядра, а также ряд других жизненно важных белков. Все это приводит к нарушению всех процессов жизнедеятельности клетки.

В то же время каспазы активируют ряд белков, которые участвуют в выполнении программы самоликвидации. Например, белка, который разрезает ДНК на большие фрагменты, – этот процесс, после которого целостность ДНК необратимо уничтожается, является характерной чертой апоптоза.

Сигнал на запуск

Но каким же образом клетка узнает, что ей пора самоликвидироваться? Кто и как дает указания киллерам-каспазам?

Имеется два основных пути, по которым передаются апоптопические сигналы в виде клеточных регуляторов, таких как гормоны, антигены, моноклональные антитела и другие молекулы. Это митохондриальный (или внутренний) путь, а также через особые трансмембранные белки – так называемые рецепторы смерти (DR, от англ. death receptor). В обоих случаях для запуска апоптоза должны образоваться особые инициаторные апоптотические комплексы. Затем происходит активация так называемых инициаторных каспаз, которые, в свою очередь, активируют эффекторные (разрушающие клеточные структуры) каспазы, о которых упоминалось выше (Nicholson, 1999).

Митохондриальный путь инициируется в результате интенсивного воздействия на клетку ряда повреждающих факторов. Однако каким образом эти повреждения трансформируются в митохондриальный апоптотический сигнал, пока в деталях не установлено. Тем не менее достоверно известно, что первым шагом на этом пути является выход из митохондрий («энергетических фабрик» клетки) цитохрома С – небольшого белка, содержащего комплекс с железом, который является компонентом митохондриальной дыхательной цепи (Green et al., 2004).

Выход цитохрома С инициирует образование в цитоплазме клетки крупного белкового комплекса – апоптосомы, в которую, помимо самого митохондриального белка, входят прокаспаза-9 и белок АПАФ-1. Именно апоптосома и является настоящим «мафиозным боссом» митохондриального пути апоптоза, который дает сигнал киллерам-каспазам.

Речь идет об очень интересном явлении – самоактивации прокаспазы. Такое может произойти лишь в том случае, когда две молекулы этого белка, ориентированные определенным образом относительно друг друга, образуют димер. Именно такие уникальные пространственные условия, необходимые для димеризации и каталитической активации фермента, и предоставляет прокаспазе-9 апоптосома. Образовавшаяся в результате активная каспаза-9 расщепляет эффекторные каспазы (каспазу-3 и каспазу-7), а дальше все происходит по стандартной схеме апоптоза (Green et al., 2004).

В случае рецептор-зависимого сигнального пути инициация апоптоза начинается с другого белкового комплекса, который образуется непосредственно на самом рецепторе смерти (Krammer et al., 2007; Lavrik et al., 2005).

К настоящему времени семейство таких рецепторов включает шесть представителей, в том числе рецептор такого широко известного белка, как фактор некроза опухоли. Все рецепторы смерти имеют одинаковый фрагмент из 80 аминокислот – так называемый домен смерти, расположенный на белковом «хвостике», выходящем в цитоплазму клетки. Такой же аминокислотный фрагмент имеет и белок-адаптер FADD, находящийся в цитоплазме клетки. Домены смерти могут взаимодействовать между собой с образованием устойчивой связи; FADD, в свою очередь, способен присоединять к себе прокаспазу.

Вся цепь событий по образованию апоптотического комплекса запускается лигандом смерти – белком-агонистом, способным специфично связываться с рецептором смерти. Синтез (и, соответственно, рост концентрации) таких молекул в клетке стимулируется каскадом процессов, возникающих в ответ на повреждение клетки. В результате, благодаря посредничеству FADD, на рецепторе образуется комплекс DISC (от англ. death-inducing signaling complex), что в дословном переводе означает «сигнальный комплекс, инициирующий гибель». Именно в этом комплексе, как и в апоптосоме, происходит самоактивация прокаспазы-8, которая, в свою очередь, активирует эффекторные каспазы (каспазу-3 и каспазу-7) и инициирует клеточную гибель (Lavrik et al., 2005; Krammer et al., 2007). Собственно говоря, на этом различия между запуском двух сигнальных путей апоптоза заканчиваются.

Жить или не жить?

Нужно отметить, что любая клетка организма постоянно подвергается многочисленным повреждающим воздействиям, таким как радиационное излучение разных типов, разнообразные химические агенты, недостаток питательных веществ и т. п. К счастью для нас, для полноценной инициации клеточной гибели необходимо сравнительно сильное воздействие. На страже апоптотических путей стоят специфические механизмы, играющие роль «регулировщиков движения». Эту роль играют особые белки XIAPs и FLIP (Lavrik et al., 2005).

Белки XIAPs ингибируют каспазу-9, которая активируется вследствие развертывания митохондриального пути. Связываясь с активным центром каспазы, они не дают «киллеру» выполнять свою работу. Однако с помощью этих белков клетке удается заблокировать лишь небольшое число активных каспаз. Если же концентрация активных каспаз превышает некий пороговый уровень, то белков XIAPs становится недостаточно, и процесс апоптоза остановить уже невозможно.

В случае рецепторзависимого сигнального пути апоптоза ингибитором активации прокаспазы-8 служит близкий ей по структуре белок FLIP. Молекулы этого белка также могут связываться с апоптическим комплексом DISC, конкурируя за «место» с молекулами прокаспазы, – при повышенной концентрации в цитоплазме они блокируют все возможные «места» такого связывания (Krammer et al., 2007). В результате прокаспаза-8 не может быть активирована, и апоптоз не запускается.

Нарушения в уровне экспрессии как про- так и антиапоптотических белков может привести к серьезным отклонениям от обычного образа жизни клетки. Так, повышенный уровень экспрессии белков XIAPs и FLIP имеют многие раковые клетки. Выбрав курс на собст­венное бессмертие, в конечном счете они приводят к гибели все многоклеточное «сообщество» организма.

Итак, в отличие от голливудского детектива, в истории про апоптоз нет главного действующего лица: своевременное уничтожение поврежденных клеток и в итоге – жизнеспособность организма зависит от слаженной цепочки событий, в которой участвует множество различных белковых молекул.

И здесь очень важны количественные показатели, такие как концентрация. Сегодня изучением того, как влияет на инициацию и дальнейший ход апоптоза уровень содержания в клетке различных молекул, занимается одна из передовых областей современной науки – системная биология (Bentele et al., 2004). Основной ее постулат заключается в том, что протекание сложных процессов внутри клетки можно понять, лишь учитывая максимально большое число клеточных параметров. Для этого на основе экспериментальных данных создается компьютерная модель, которая учитывает действие множества факторов. Полученные таким образом предсказания о ходе основных клеточных процессов могут использоваться в борьбе с препятствиями человечества на пути к долгой и здоровой жизни.

Lavrik I. N., Golks A., Krammer P. H. Caspases: Pharmacological manipulation of cell death // J. Clin. Invest. 2005. V. 115, N 10. P. 2665—2672.

Krammer P. H., Arnold R., Lavrik I. N. Life and death in peripheral T cells // Nat. Rev. Immunol. 2007. V. 7. P. 532—542.

Green D. R. and Kroemer G. The pathophysiology of mitochondrial cell death // Science. 2004. V. 305. P. 626—629.

Апоптоз [Самоуничтожение клетки, Запрограммированная смерть]

Апоптоз — это генетически регулируемая программа клеточной гибели, которая имеет определенные морфологические критерии и биохимические маркеры. Эта программа очень важна для нормального развития многоклеточного орга­низма, сохранения нормального числа полноценных и своевременного удале­ния поврежденных клеток.

Термин «апоптоз» (гр. аро — полное, ptosis — падение, утрата) предложил в 1972 году J. F. Kerr, заимствовав его у Гиппократа, назвавшего так осенний листопад.

Известно, что действие сильных повреждающих факторов вызывает некроз клетки. Гибель клетки в этом случае обусловлена избыточной внешней энер­гией (физической, химической или биологической), нарушающей ее внут­риклеточный энергетический баланс и приводящей к потере структурной целостности.

В последние годы растет интерес к запрограммированной гибели клеток — апоптозу. Важно понимать, что фактор, вызывающий апоп­тоз, не обладает достаточной энергией для непосредственного повреждения клетки. Он лишь включает ее собственные механизмы самоуничтожения, т.е. апоптоз реализуется за счет внутренней энергии клетки и является таким же неотъемлемым свойством живого, как рост, пролиферация и размножение.

Читайте также:  Агонист - виды: Эндогенные и Экзогенные, Физиологические, Суперагонисты, Обратные и Необратимые Агонисты, Избирательные

Возможности регуляции клеточной жизни всегда вызывали большой ин­терес биологов и врачей. Если процессы пролиферации являются достаточно изученными, то точка зрения на регуляцию разрушения (умирания) клеток пока еще не оформлена в окончательном виде в то же время при многих со­стояниях нарушения именно этой программы становятся определяющими для течения заболевания.

Морфология апоптоза

Апоптоз имеет четко выраженные и довольно хорошо изученные морфоло­гические критерии: уменьшение размеров, сморщивание клетки, конденсация и фрагментация ядра, разрушение цитоскелета при сохранении целостности клеточной мембраны.

Апоптотические тельца

Когда процесс внутренней деградации завершен, клетка представляет собой совокупность фрагментов цитоплазмы, окруженных мембранами (т. н. апоптотические тельца). Изоляция внутриклеточного содержимого элементами цито­леммы является главной причиной отсутствия асептического воспаления при апоптозе. Таким образом, гибель клетки путем апоптоза (в отличие от некроти­ческой) переносится организмом относительно «безболезненно». В последую­щем апоптотические тельца фагоцитируются макрофагами, где макромолеку­лы погибшей клетки расщепляются до мономеров.

Факторы апоптоза

Сегодня установлено множество факторов, способных индуцировать апо­птоз клетки. С другой стороны, некоторые воздействия могут повысить устой­чивость к запрограммированной гибели (табл. 1).

Таблица №1. Физиологические и фармакологические факторы апоптоза

I. Ингибиторы апоптоза

Физиологические ингибиторы

Гены вирусов

Фармакологические агенты

II. Индукторы апоптоза

Физиологические активаторы

Агенты, вызывающие повреждение

Агенты, связанные с лечением каких-либо заболеваний

Токсины

  • факторы роста
  • экстраклеточный матрикс
  • лиганд CD40
  • нейтральные аминокислоты
  • цинк
  • андрогены
  • эстрогены
  • ИЛ-2, -3, -4, -10
  • α -интерферон
  • Е1В аденовируса
  • р35 бакуловируса
  • LAP бакуловируса
  • CrvA вируса коровьей оспы
  • BHRF1, LMP1 вируса Эпштейна-Барр
  • LVW5 вируса африканской свиной лихорадки
  • 1 34.5 антиген вируса герпеса
  • ингибиторы кальпаина
  • ингибиторы цистеиновых протеаз
  • индукторы опухолей: форболовые эфиры, фенобарбитал, α-гексохлороциклогексан
  • хелаторы кальция и антиоксиданты
  • семейство ФНО: ФНО-α, Fas
  • трансформирующий фактор роста β
  • нейротрансмиттеры: глутамин, дофамин, N-метил-d-аспартат
  • устранение ростовых факторов
  • потеря контакта с матриксом
  • кальций
  • глюкокортикоиды
  • ИЛ-1, -10
  • γ-интерферон
  • воздействие температуры
  • вирусная инфекция
  • бактериальные токсины
  • онкогены туе, rel, EJA
  • оксиданты
  • свободные радикалы
  • антиметаболиты
  • химиопрепараты: цисплатина, доксорубицин, блеомицин, метотрексат, винкристин и др.
  • ионизирующее излучение
  • УФ-излучение
  • этанол
  • β-амилоидный пептид Материал с сайта http://wiki-med.com

Функции апоптоза

В иммунной системе апоптоз выполняет по крайней мере две функции. Во-первых, апоптоз это эффекторный механизм иммунных реакций. Вторая функция апоптоза — регуляция иммунного ответа.

Эффекторный механизм иммунных реакций

Регуляция иммунного ответа

Апоптоз иммунокомпетентных клеток является неотъемлемым компонен­том иммунных реакций. Установлено, что селекция антигенспецифических Т- и В-лимфоцитов сопровождается массовой гибелью активированных, но антигеннеспецифических лимфоцитов. С другой стороны, результатом иммун­ного ответа является накопление избыточного количества антигенспецифических Т- и В-клеток, что ведет к нарушению генетически детерминированного баланса клеток макроорганизма. Выравнивание клеточного баланса после уда­ления патогена обусловлено именно запрограммированной гибелью большей части антигенспецифических лимфоцитов.

Механизмы апоптоза

Цитоплазматический апоптоз

Как уже указывалось, апоптоз является внутренним свойством клетки, свое­образной ее реакцией на различные внешние раздражители. Поэтому неуди­вительно, что в любой клетке человеческого организма функционирует целая система цитоплазматического апоптоза (рис. 32), Информация о структуре компонентов этой систе­мы содержится в геноме и передается от поколения к поколению. Указанную систему цитоплазматического апоптоза условно можно разделить на три части. Первая — это совокупность мембранных рецепторов, способных воспринимать проапоптотические сигналы из внутренней среды организма. Вторая — это комплекс цитоплазматических посредников, передающих воспринятый рецептором сигнал внутрь клетки к эффекторному звену. Третья — это эффекторное звено апоптоза, т.е. те компонен­ты, активация которых приводит к непосредственной гибели клетки.

Рецепторы апоптоза

Сегодня открыт целый ряд рецепторов, воспринимающих проапоптотические сигналы. Это Fas (CD95), TNF-R1 (рецептор 1-го типа к ФНО-α), DR3 (WS1-1), DR4 (TRAIL-рецептор 1), DR5 (1 RAIL-рецептор 2), DR6. Хотя указанные ре­цепторы приводят к одному и тому же биологическому эффекту, они относятся к разным семействам и поэтому отличаются по структуре. Так, Fas и TNF-R при­надлежат к семейству рецепторов к ФF10, а молекулы DR — к антигенам гис­тосовместимости. Общность их биологического действия обусловлена природой молекул, связанных с цитоплазматической частью рецептора. Такие молекулы по­лучили название доменов смерти Именно они и приводят к активации апоптоза. Наиболее изученными доменами смерти являются молекулы FADD и TRADD.

Ферменты апоптоза

Цитоплазматическими посредниками в системе апоптоза являются специ­альные ферменты, каспазы. Каспазы способны к последовательной активации друг друга, поэтому образуют своеобразный внутриклеточный каскад, включа­емый доменами смерти. Домены смерти находятся на внутренней поверхнос­ти цитолеммы в неактивном состоянии. При активации рецептора, с которым функционально связан тот или иной домен, происходит изменение конформа­ции обеих структур. Вследствие этого высвобождается активный центр домена, и он приобретает возможность взаимодействовать с каспазой 8 — инициатором всего каспазного каскада. Конечным компонентом этого каскада является каспаза 7. Именно этот фермент активирует латентную эндонуклеазу, оказывающую непосредственный повреждающий эффект на генетический материал клетки (разрывает ДНК в межнуклеосомных участках). Таким образом, эффекторным звеном системы апоптоза является латентная эндонуклеаза.

Митохондриальный апоптоз

Кроме цитоплазматических, в клетке содержится ком­плекс митохондриальных посредников апоптоза. Известно, что разрушение митохондриального аппарата приводит к неминуемой гибели клетки, посколь­ку последняя лишена энергетического обеспечения Для предотвращения не­кроза при повреждении митохондрий активируются указанные белки, обус­лавливающие более экономную апоптотическую гибель нежизнеспособной клетки. Таким образом, каскад апоптоза может реализовываться как по цито­плазматическому, так и по митохондриальному пути.

Современные методы определения апоптоза Текст научной статьи по специальности « Фундаментальная медицина»

Похожие темы научных работ по фундаментальной медицине , автор научной работы — Левицкая А. Б., Никитюк Д. Б.

Текст научной работы на тему «Современные методы определения апоптоза»

ВЕСТНИК НОВЫХ МЕДИЦИНСКИХ ТЕХНОЛОГИЙ – 2005 – Т. XII, № 3-4 – С. 33

СОВРЕМЕННЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ АПОПТОЗА А.Б. ЛЕВИЦКАЯ, Д.Б. НИКИТЮК*

Апоптоз – один из вариантов программируемой клеточной гибели, основное предназначение которого, как физиологического процесса – поддержание постоянного количества клеточных элементов в органах и тканях организма и удаление клеток, прошедших свой жизненный цикл. В отличие от гибели клеток, вызываемой патологией, процессы апоптоза происходят в ядре и цитоплазме при сохранении целостности клеточной оболочки [1]. Основными критериями, характерными для апоптоза, являются: функционально – необратимое прекращение жизнедеятельности клетки; морфологически – потеря микроворсинок и межклеточных контактов, конденсация хроматина, уменьшение объема клетки, ее фрагментация и образование апоптозных телец [2]; биохимически – гидролиз белков цитоплазмы и межнуклеосом-ный распад ДНК [1]; генетически – структурно-функциональная перестройка генетического аппарата клетки [3]. В мире приняты следующие основные методы определения апоптоза.

I. Морфологические: световая микроскопия гистологиче-

ских препаратов и полутонких срезов; электронная, фазовоконтрастная, поляризационная, флюорисцентная, электронно-

трансмиссионная микроскопия; сканирующая, световая и электронно-микроскопическая радиоавтография, с использованием радиоактивной метки; TUNEL- и ISEL-методы, используемые для оценки апоптоза в тканевых срезах с помощью встроенных в концевые фрагменты ДНК меченых нуклеотидов.

II. Биохимические: электорофорез в агарозном геле с компьютерной денситометрией электрофореграмм для количественного определения степени фрагментации ДНК; метод ДНК-комет, или метод электрофореза единичных клеток со сканированием комет; определение активности каспаз.

III. Иммунологические: использование поли- и монональ-ных антител для выявления рецепторов на поверхности клеток, продуктов онкогенов и антионкогенов, цитотоксинов, ростовых факторов и других структур, антител против каспаз, а также против белков, регулирующих процесс апоптоза.

IY. Иммуноцитохимические: детекция апоптоза по идентификации экспрессии фосфатидилсерина на наружной стороне мембраны клетки с помощью ФИТЦ-меченного аннексина и последующей люминесцентной микроскопией.

Y. Иммуногистохимические: использование специфических маркеров клеточного цикла Кь67 PCNA с обработкой срезов в СВЧ-печи. Оценку результатов проводят стрептовидин-биотинпероксидазным методом.

YI. Проточная цитофлюориметрия позволяет выявить число апоптотических клеток в популяциях лимфоцитов, тимоцитов, макрофагах, клеток культуры. Апоптотические ядра обнаруживаются как широкий пик гиподиплоидной ДНК, который легко отличим от узкого диплоидного пика ДНК нормальных клеток.

YII. Вестерн-блот анализ применяется для идентификации электрофоретически разделенных полипептидных цепей. В качестве зондов используются меченые антитела.

YIII. Биотехнологические: трансфекция клонируемого гена в соматические клетки животных и человека; создание трансгенных мышей для выяснения роли введенного гена в клеточном развитии и гибели клеток.

Изучен уровень апоптоза гепатоцитов при подостром токсическом гепатите, вызванном четыреххлористым углеродом. Для создания модели токсического гепатита крысам-самцам Вистар опытной группы в течение 9 дней вводили внутримышечно 50% раствор четыреххлористого углерода в оливковом масле в дозе 0,3 мл на 100 г. массы тела. Контрольные и опытные животные содержались на общевиварном рационе и получали воду ad libitum. Показано статистически малозначимое увеличение активности каспазы -3 – на 9,3% в печени крыс опытной группы по сравнению с аналогичным показателем контрольной группы. Межнуклеосомной фрагментации ДНК гепатоцитов у животных как опытной, так и контрольной группы при этом не наблюдалось.

Поражение печени при действии 4-хлористого углерода сопровождается активацией каспазы-3 и не приводит к межнуклео-сомной фрагментации ДНК. По-видимому, при подостром токсическом гепатите, вызванном четыреххлористым углеродом, вклад процессов каспаза-зависимого апоптоза незначителен и гибель гепатоцитов развивается по другим механизмам [4].

С помощью проточной цитофлюориметрии изучено влияние пребиотиков инулина и олигофруктозы на спонтанный апоп-тоз в клетках иммунной системы. Крысы самцы Вистар двух опытных групп в течение 28 дней содержались на изокалорийном полусинтетическом казеиновом рационе, в котором кукурузный крахмал заменяли на инулин или олигофруктозу (10 % по массе).

Контрольные животные получали стандартный полусинте-тический казеиновый рацион. Исследовались суспензии клеток тимуса, селезенки, брызжеечных лимфатических узлов и перитонеальных макрофагов. Установлено, что обогащение рационов крыс инулином и олигофруктозой не оказывало влияния на процессы апоптоза в клетках иммунной системы [5, 6].

Ныне наметилась тенденция к использованию количественных методов оценки апоптоза, таких как проточная цитофлюориметрия, определение активности каспаз, ТУННЕЛЬ-метод, электронная микроскопия и др. Учитывая неоднозначность признаков апоптоза, необходимо комплексное использование разных методов для определения и оценки апоптотической гибели.

1. Kerr J.F.R. et al. // Brit. J. Cancer.- 1972.- Vol. 26.- P. 239257.

2. Wyllie AH. et al. // Int. Rev.Cytol.- 1980.- Vol. 68.- P. 251306.

3. Лушников Е. Ф., Абросимов А.Ю. Гибель клетки (апоптоз).- М, Медицина, 2001.- 192 с.

4. Левицкая А.Б., Москалева Е.Ю. // Мат-лы VIII Всерос. конгр. «Оптимальное питание – здоровье нации».- М., 2005.-С. 75.

5. Трушина Э.Н. и др. // Мат-лы 3-й Межд. науч.-иссл. конф. «Питание здорового и больного человека».- СПб.- 2005.- С.197.

6. Трушина Э.Н. и др. // Вопр. пит.- 2005.- №3.- С. 35^0.

МЕТОД ОПРЕДЕЛЕНИЯ ПОГЛОЩЕННОЙ ЭНЕРГИИ ЭЛЕКТРИЧЕСКОГО ПОЛЯ ПРИ УВЧ-ТЕРАПИИ

Воздействие в лечебных целях на организм человека электрическим или магнитным полем ультравысокой частоты (УВЧ) является одним из наиболее распространенных методов в физиотерапии [1]. На практике зарекомендовал себя способ УВЧ-терапии с применением конденсаторного варианта, когда объект помещается с воздушным зазором между пластинами вторичного (терапевтического) контура генератора. Количество поглощенной энергии и терапевтический эффект находится в зависимости от напряженности электрического поля (ЭП) между конденсаторными пластинами, их величины, формы и расположения относительно тела пациента. В связи с этим важной задачей является корректное определение (дозиметрия) энергии ЭП УВЧ, поглощенной в тканях и органах пациента в процессе воздействия.

Наиболее распространенным методом является дозиметрия по индивидуальным ощущениям пациентом чувства тепла в области воздействия ЭП УВЧ. Однако если даже и оставить в стороне неизбежный субъективизм этого метода дозиметрии, общность в критериях оценки поглощенной энергии ЭП УВЧ отсутствует. В отечественной физиотерапии различают три дозы: I – без ощущения тепла, II – с ощущением слабого тепла и III – с ощущением отчетливого тепла, тогда как в зарубежной практике используется принцип 4-х доз: I – отсутствие ощущения тепла, II

Добавить комментарий